

Neutron Beam Profile Measurements with a Triple GEM for Thermal Neutrons at the CERN n_TOF Facility 5.Puddu^{1,2},

E. Aza^{1,3}, E. Berthoumiex¹, C. Guerrero¹, F. Murtas^{1,4}, M. Silari¹

1) CERN 2)AEC-LHEP-Bern Universität 3) University AUTH Thessaloniki 4) INFN-LNF

- > n_TOF facility
- Triple GEM detector for thermal neutrons
- Set up
- Results
- Conclusions

n-TOF neutron facility @CERN

Neutrons are collimated and guided through an evacuated beam pipe to an experimental area at **185 m** from the spallation target.

C. Guerrero et al, Performance of the neutron time-of-flight facility n_TOF at CERN, Eur. Phys. J. A (2013) 49: 27

- Proton intensity
 Proton beam momentum
 Proton pulse width
 high instantaneous n flux
 wide energy spectrum
 low repetition rate
 neutron time width
 - 6 ns (rms) 10⁵ n/cm²/pulse 25 meV : 1 GeV < 0.25 Hz 160 ms

20 GeV/c

8x10¹² p/pulse

Experimental area

Neutron spectrum @n_TOF

Wide neutron spectrum spanning an energy range from meV up to the GeV region.

Contamination by gammas

Silvia Puddu - IEEE-NSS 2013- Seoul

Triple GEM Detector

Gas Electron Multiplier:

- 50 μ m thick kapton foil
- 5 μm of Copper on each side
- high surface-density of bi-conical channels

70 μm _____,140 μm

The three functions

Conversion, Amplification, & Readout

are well separated and decoupled

Working with different levels of gain it is possible to obtain high level of particle discrimination

F. Sauli NIM A386 531

M. Alfonsi et al., The triple-Gem detector for the M1R1 muon station at LHCb, N14-182, 2005 IEEE-NSS

11/20/2013

Working point

The α produce an high ionization which allow a wide plateau before the γ background

Silvia Puddu - IEEE-NSS 2013- Seoul

α

 $n + {}^{10}Bo \rightarrow \begin{cases} {}^{7}Li + \boldsymbol{\alpha} + \gamma, & (97\%) \\ {}^{7}Li + \boldsymbol{\alpha}, & (3\%) \end{cases}$

How to detect thermal neutron

A. Pietropaolo et al., A new ³He-free thermal neutron detector concept based on the GEM technology, conference proceeding, He-2-4, 2012 IEEE-NSS Anaheim CA

Boron multilayer cathode

First prototype made in 2012

Detector linearity measurements in a fission reactor

Measurements at Triga (ENEA) Power of 1 MW

- Gamma background free
- No electronic noise

Good linearity up to 1 MW

FPGA data acquisition

Beam spot

With a scan procedure it is possible to make an image of the neutron beam in the thermal region

Results: GEM efficiency and neutron spectrum profile

From a convolution between:

- PS beam intensity
- Neutron flux by ²³⁵U fission chamber from PTB institute (GE)

$$counts = \frac{\# hits}{PAD \ Cluster \ size}$$

 $n(Hz) = {}^{10}B \ counts - Glass \ counts$

Results: GEM efficiency and neutron spectrum profile

Expected neutrons

11/20/2013

Results: beam image

- Sum of the two matrix bin by bin
- The entries of the new matrix are divided by 1 or 2
- Beam image!

11/20/2013

Results: beam image

Beam Profile

- Scan steps: 3mm
- Sum of the two matrix bin by bin
- The entries of the new matrix are divided by 1 or 2
- Beam image!

11/20/2013

Results: beam projection

<u>http://pceet075.cern.ch</u> FLUKA simulation for n_TOF collaboration by V. Vlachoudis - CERN

CONCLUSIONS

- A triple GEM for thermal neutrons was tested at 185 m from the spallation source in the experimental room of the n_TOF facility at CERN
- The mean efficiency of this detector is 4.2%
- The efficiency curve vs neutron energy was measured in the range 0.03 eV- 1.75 eV
- The projection of the beam is in **fair agreement** with the one obtained with simulation
- With a scan procedure it was possible to perform the **beam imaging** for **thermal neutrons** spot with **almost complete rejection** of γ rays

Thanks!

This work was supported by ARDENT Marie Curie Initial Training Network funded by the European Commission 7th Framework Program under Grant Agreement 289198

Triple GEM detector

40% of

- Particle conversion, charge amplification and signal induction zones are physically ٠ separated
- Time resolution: 9.7 ns for $Ar-CO_2$ (70-30)
- Spatial resolution: up to 200 μ m limited by readout
- Dynamic range: from 1 to 10⁸ particles/cm² s
- Effective gain is given by the formula: $G_{eff} \propto \sum V_{G}$ •

F. Sauli NIM A386 531

M. Alfonsi et al., The triple-Gem detector for the M1R1 muon station at LHCb, N14-182, 2005 IEEE-NSS

Triple GEM detector

- Particle conversion, charge amplification and signal induction zones are physically separated
- Time resolution: 9.7 ns for $Ar-CO_2$ (70-30)
- Spatial resolution: up to 200 μm limited by readout
- Dynamic range: from 1 to 10⁸ particles/cm² s
- Effective gain is given by the formula: $G_{eff} \propto \sum V_{G}$
- F. Sauli NIM A386 531

M. Alfonsi et al., The triple-Gem detector for the M1R1 muon station at LHCb, N14-182, 2005 IEEE-NSS

11/20/2013

A Standard Triple GEM construction

The detectors described in this talk are built starting form the standard 10x10cm²: only one GEM foil has been modified to have central electrodes.

The GEM are stretched and a G10 frame is glued on top

- THERMAL neutrons: 128 pads 3×6 mm²
 - ~ 25 cm² of sensitive area

Triple GEM detector: electronics readout

- FAST neutrons: 128 pads 6x12 mm² ~ 100 cm² of sensitive area
- THERMAL neutrons: 128 pads $3 \times 6 \text{ mm}^2 \sim 25 \text{ cm}^2$ of sensitive area
- 8 chip CARIOCA to set the threshold on 16 channels and reshape the signal
- FPGA-based DAQ: 128 scaler and TDC channels, in \rightarrow gate and trigger, out \rightarrow signals
- HVGEM power supply with 7 independent channels and nano-ammeter

Developed by G. Corradi D. Tagnani Electronic Group LNF-INFN

Developed by A.Balla and G. Corradi and Electronic Group LNF-INFN

11/20/2013

Triple GEM detector: electronics readout

- FAST neutrons: 128 pads 6x12 mm² ~ 100 cm² of sensitive area
- THERMAL neutrons: 128 pads $3 \times 6 \text{ mm}^2 \sim 25 \text{ cm}^2$ of sensitive area
- 8 chip CARIOCA to set the threshold on 16 channels and reshape the signal
- FPGA-based DAQ: 128 scaler and TDC channels, in \rightarrow gate and trigger, out \rightarrow signals
- HVGEM power supply with 7 independent channels and nano-ammeter

Developed by G. Corradi D. Tagnani Electronic Group LNF-INFN

Developed by A.Balla and G. Corradi and Electronic Group LNF-INFN

Time evolution

online measurement

Time spectrum (1ms/bin) 150ms Δt

N-TOF thermal neutron Beam spot

online measurement

Time spectrum (1ms/bin) 150ms gate

With a scan procedure it is possible to make an image of the neutron beam in the thermal region

11/20/2013

TEST @ N-TOF: MEASUREMENTS

Neutron beam has been reconstructed making an horizzontal scan on the beam.

ToF measurements: thermal energy spectrum

Slices acquisition: Time spectrum (1ms/bin), 150ms total gate. 11/20/2013 Silvia Puddu - IEEE-NSS 2013- Seoul