

MOTIVATION

By Y.Algoet, L.Bruno: EDMS 1261586 . DGS-RP Group Meeting 17-01 2013

- Materials in accelerator environment are activated by radiations¹
- In order to treat this materials after the decommissioning, it is necessary a characterization to know the nuclide population
- Gamma emitters are easily recognised by γ spectrometry
- The challenge is to measure the ⁵⁵Fe amount
- A detector with high efficiency to ⁵⁵Fe and high γ rejection to is needed

1: F.P. La Torre et al. Radiological Hazard Classification of materials in CERN's accelerators, CERN technical note 2012 1184236

2

GAS ELECTRON MULTIPLIER

- Autoshielding: only surface contribues to x-ray emission when for γ is the whole volume
- Efficiency for x-ray and γ rejection unknown

Characterization with calibration sources

F. Sauli NIM A386 531

M. Alfonsi et al., The triple-Gem detector for the M1R1 muon station at LHCb, N14-182, 2005 IEEE-NSS

MATERIAL BUDGET AND MEASUREMENT WITH SOURCES

	6keV			
	Width(µm)	Density (g/cm3)	Attenuation length (cm)	Losses photons
Air		0.0012	35	
Mylar	11.5 μm	1.4	0.05	2.5%
Aluminium	0.5 μm	2.7	0.0032	1.5%
ArCo2 70/30	0.9 cm	0.0018	3	29.0%
Copper	5 μm	8.9	0.0010	40.0%
Kapton	50 µm	1.4	0.05	10.0%

X-ray source: ⁵⁵Fe

$$^{55}Fe \rightarrow {}^{55}Mn * \rightarrow (\sim 28\%)$$

$$55Mn + 6keV$$

- Not negligible attenuation in air
- Conversion in gas mixture through photoelectric effect
- Avalance produced by low energy electron ~ 200 e- created in the drift
- Conversion efficiency untill 9 mm of ArCO₂: 39%

MATERIAL BUDGET AND MEASUREMENT WITH SOURCES

			1.17MeV	1.33MeV		C
	Width	Density (g/cm3)	Attenuation length (cm)	Attenuation length (cm)	Losses	•
Air		0.0012	14077	14858		
Mylar	11.5 μm	1.4	11.8	12.6	0.0090%	•
Aluminium	0.5 μm	2.7	6.3	7.0	0.0007%	
ArCo2 70/30	0.3 cm	0.0018	9890	10560	0.0097%	•
Copper	5 μm	8.9	2.1	2.2	0.0200%	
Kapton	50 µm	1.4	11.7	12.5	0.0400%	

Gamma source: ⁶⁰Co

- ${}^{60}Co \rightarrow {}^{60}Ni * + \beta + \bar{\nu} \rightarrow$
- $(100\%) \ {}^{60}Ni + (1.17MeV) + (1.33 MeV)$
- Almost no attenuation in air or gas mixture
- Conversion through Compton effect in producing a MIP e-: $\gamma + e^- \rightarrow \gamma' + e^-(MIP)$
- Conversion efficiency untill 9 mm of ArCO₂: 1.14%
- Electrons from β decay

CHARACTERIZATION WITH SOURCES

HV scan – 10 mm detector

Solid angle:
$$\Omega = 2\pi \left(1 - \frac{d}{\sqrt{d^2 + r^2}}\right)$$

Efficiency:
$$\varepsilon = \frac{rate/Clsz}{Activity} \times \frac{4\pi}{\Omega}$$

Photons:	9 mm
Working point	960
Efficiency ⁵⁵ Fe	39%
Efficiency ⁶⁰ Co	1.14%
Rejection Factor	34

MEASUREMENTS WITH SAMPLES: PROCEDURE

Distance Detector-Sample: 2 cm WP: 960 V Gate: 1000 ms Efficiency X: 39% Efficiency gamma: 1.14%

- First measurement with the sample in front of the detector
- Second measurement with a shielding made with 0.4 mm of Al in order to shield x-rays and to get the amount
- Several measurements of background

MEASUREMENTS WITH SAMPLES: STS PIPE SAMPLES

Sample from STS pipes with well known isotope composition from radiochemical analysis and gamma spectroscopy.

Sample	Surface cm2	Volume cm3	Co-60 Bq/gr	Fe-55 Bq/gr
149	20.6	15.5	3	14
62	19.2	6.79	66	24
63	20.3	8.26	57	22

MEASUREMENTS WITH SAMPLES: STS PIPE SAMPLES

Sample	No Shielding	Shielding	Gamma Norm Vol	X rays	
149	0.63	0.46	0.01	0.17	$\gamma = \frac{Sh - Bck}{Sample Velu}$
62	3.22	2.57	0.31	0.65	Sample Volu
63	2.73	1.94	0.19	0.79	X = No Sh - Sh

S. PUDDU-WORKSHOP IEEE 2013- SEOUL

MEASUREMENTS WITH SAMPLES: SC (SYNCHROCYCLOTRON) SAMPLE

SC sample STS Screenshot after 120 events WP 960 V

Only results from gamma spectroscopy

Sample from SC			
Surface cm2	7.07		
Volume cm3	2.8		
Co-60 Bq/gr	4		
Fe-55 Bq/gr	?		

MEASUREMENTS WITH SAMPLES: SC (SYNCHROCYCLOTRON) SAMPLE

STS sample from SC - Attenuation in air

Lead collimators in front of the sample. Hole diameter 0.2 cm Thickness 0.23 cm WP=960 V

Shielding	0.39
No shielding	0.43
Gamma norm vol (Hz)	0.05
X rays (Hz)	0

11

MEASUREMENTS WITH SAMPLES: SAMPLE IN TAPE

- Sample in powder
- Higher granularity
- Higher contribution from ⁵⁵Fe

Sample	GEM Rate (Hz)	Spectro Co-60 (Bq/gr)	Spectro Fe-55 (Bq/gr)
Background	0.28±0.02		
149	0.27±0.02	3.0	14.0
52	0.24±0.02	7.8	7.1
62	0.33±0.03	66.0	24.0
ISR 71	0.25±0.03	2.1	?

CONCLUSIONS

- A fully characterization of a 9 mm drift camera has been done:
 - $\varepsilon_X = 39\%$ Rejection: 34
 - $\varepsilon_{\gamma} = 1.14\%$
- Several radioactive samples have been measured with several procedures
- **PROBLEM:** since the attenuation length in waste material is 8 μ m for x rays, while for γ is 23 cm, the x-rays intensity is always extremely low
- We started to work with other detector as GEMPix and to scratch the waste to obtain a powder in order to have more granularity

13