



# HYBRID PIXEL DETECTORS -Basic principles and applications





#### ME

- PhD Student at Mid Sweden University
- Full time at Miun 2010-2011
- Moved to CERN for a 3 year fellowship contract within the ARDENT project.
- Working in the microelectronics division together with the Medipix design team
- Chip characterization and applications for imaging and dosimetry













# OUTLINE

- CERN
- Hybrid Pixel Detectors
  - Timepix
  - Medipix3RX
- Applications
  - Color X-ray imaging
  - Particle identification and dosimetry
- New detectors
- Summary



# CERN

The world's largest particle physics research laboratory

An international effort of:

20 European Member States

7 Observer or Acceding States

28 Non-Member States involved in particular projects

 $\sim$  2 400 staff members (75% are applied physicists, engineers and technicians)

~ 11 500 users from all over the world (mostly physicists)

Annual budget ~ USD 1 000 000 000







#### AN AERIAL VIEW OF CERN AND THE LARGE HADRON COLLIDER ACCELERATOR COMPLEX







# THE LARGE HADRON COLLIDER



Two counter rotating proton beams on 27km circumference ring

Particle bunch crossings 40 M times per second

100 billion particles in each bunch

Several 1 000 particles created per bunch crossing

7 TeV on 7 TeV Collisions

Entire magnet ring cooled to 1.8K





Lead-Lead Collision at ALICE





# **HYBRID PIXEL DETECTORS**



Read-out chip





#### **HYBRID PIXEL DETECTORS**







#### **SIGNAL FORMATION** Moving charge induces a • signal on the read out pad amplitude Pulse height is proportional to • the deposited energy In order to detect a particle it • has to interact with the sensor ΤН material and create electronhole pairs time ոոռոռո Sensor Read-out chip





## **CHARGE CARRIER SIMULATION CDTE**





By David Krapohl, Mid Sweden University

#### **NOISE FREE IMAGES**



Global XY



Cosmic particles seen by ALICE





# CAN THIS BE USED FOR SOMETHING ELSE?

- The idea of using the single photon counting principle with hybrid pixel detectors for X-ray imaging dated back to late 80s
- The Medipix collaboration was formed to use the knowledge gained in the design and fabrication of hybrid pixel detectors to make a single photon counting system for X-ray radiography.
- Initial partners of the collaboration were CERN, the University of Freiburg (Germany), the University of Glasgow (Scotland) and the INFN of Pisa and Napoli
- Mid Sweden University joined the collaboration 1999



#### **MEDIPIX 2/3 COLLABORATION**







Drawing: R. Ballabriga



#### ADVANTAGES OF HYBRID PIXEL DETECTORS FOR X-RAY IMAGING















#### Optimal weighting for low contrast objects: $W \sim E^{-3}$











![](_page_18_Picture_3.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_20_Picture_0.jpeg)

#### **STOPPING IN 0.5 MM LAYERS**

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_21_Picture_0.jpeg)

# **SUMMARY HYBRID PIXEL DETECTORS**

- Developed for high energy particle physics
- Advanced processing capabilities on pixel level
- Sensor layer can be optimized for a specific application
- "Noise free" images due to photon counting
- Spectral sensitivity for increased contrast and/or lower dose

![](_page_21_Picture_7.jpeg)

## **DESIGNED CHIPS**

![](_page_22_Picture_1.jpeg)

| Medipix1 (1998)   | 1μm SACMOS, 64x64 pixels, 170x170μm²<br>PC / Frame based readout                                                                                               |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medipix2 (2001)   | 0.25μm CMOS, 256x256 pixels, 55x55μm²<br>PC / Frame based readout                                                                                              |
| Timepix (2006)    | 0.25μm CMOS, 256x256 pixels, 55x55μm²<br>PC, ToT, ToA / Frame based readout                                                                                    |
| Medipix3 (2009)   | 0.13μm CMOS, 256x256 pixels, 55x55μm <sup>2</sup><br>PC / Frame based readout<br>Event by event charge reconstruction and allocation                           |
| Dosepix (2011)    | 0.13µm CMOS, 16x16 pixels, 220x220µm²<br>ToT, PC / Rolling shutter (programmable column readout)<br>Event by event binning of energy spectra (16 digital thrs) |
| Timepix3 (2013)   | 0.13μm CMOS, 256x256 pixels, 55x55μm²<br>PC; ToT, ToA (simultaneous)/ Data driven readout                                                                      |
| Smallpix          | 0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD)<br>PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC)<br>TSV compatible design                                   |
| Clicpix prototype | 65nm CMOS, 64x64 pixels, 25x25μm²<br>ToA, ToT1 (simultaneous)/ Frame based (ZC)                                                                                |

![](_page_22_Picture_3.jpeg)

## **DESIGNED CHIPS**

![](_page_23_Picture_1.jpeg)

| Medipix1 (1998)   | 1μm SACMOS, 64x64 pixels, 170x170μm²<br>PC / Frame based readout                                                                                                           |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medipix2 (2001)   | 0.25μm CMOS, 256x256 pixels, 55x55μm²<br>PC / Frame based readout                                                                                                          |
| Timepix (2006)    | 0.25μm CMOS, 256x256 pixels, 55x55μm²<br>PC, ToT, ToA / Frame based readout                                                                                                |
| Medipix3 (2009)   | 0.13μm CMOS, 256x256 pixels, 55x55μm <sup>2</sup><br>PC / Frame based readout<br>Event by event charge reconstruction and allocation                                       |
| Dosepix (2011)    | 0.13μm CMOS, 16x16 pixels, 220x220μm <sup>2</sup><br>ToT, PC / Rolling shutter (programmable column readout)<br>Event by event binning of energy spectra (16 digital thrs) |
| Timepix3 (2013)   | 0.13μm CMOS, 256x256 pixels, 55x55μm²<br>PC; ToT, ToA (simultaneous)/ Data driven readout                                                                                  |
| Smallpix          | 0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD)<br>PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC)<br>TSV compatible design                                               |
| Clicpix prototype | 65nm CMOS, 64x64 pixels, 25x25μm²<br>ToA, ToT1 (simultaneous)/ Frame based (ZC)                                                                                            |

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_0.jpeg)

#### TIMEPIX

- Hybrid Pixel Detector
- 256x256 pixels
- 55um pixel pitch
- Single Photon Processing
  - Time-over-Threshold
  - Time of arrival
  - Photon Counting

Capable of operating in both electron and hole collection mode

Multi purpose chip

~ 500 transistors / pixel

![](_page_24_Figure_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_25_Picture_0.jpeg)

# **DIGITAL BACK-END ELECTRONICS**

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_3.jpeg)

Drawing: W. Wong

### TIMEPIX

- Compact system 15x60mm for the USB Lite read out including sensor
- USB Connection to standard PC
- Pixelman control software allowing scripting and plugins

![](_page_26_Picture_4.jpeg)

Usb read out

![](_page_26_Picture_6.jpeg)

Usb lite

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

Pictures courtesy of IEAP Prague

![](_page_27_Picture_0.jpeg)

## **TIMEPIX PIXEL CELL SCHEMATIC**

![](_page_27_Figure_2.jpeg)

X. Llopart, et al., "Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements" NIM A 581 (2007) 485-494.

![](_page_27_Picture_4.jpeg)

![](_page_28_Picture_0.jpeg)

### TIMEPIX

|                                        | Holes [ h <sup>+</sup> ]      | Electrons [e <sup>-</sup> ]     |
|----------------------------------------|-------------------------------|---------------------------------|
| Electronic noise                       | 99.4 ± 3.8 e <sup>-</sup> rms | 104.8 ± 6 e <sup>-</sup> rms    |
| Gain                                   | ~16.7 mV/ke <sup>-</sup>      | ~16.3 mV/ke <sup>-</sup>        |
| Threshold DAC step gain                | $24.7 \pm 0.7 e^{-1}$         | $25.4 \pm 1.2  e^{-3}$          |
| CSA linearity [0-20 ke-]               | >99                           | 9.9%                            |
| TOT dynamic range                      | > 200 ke <sup>-</sup> (measu  | red up to ~40 ke <sup>-</sup> ) |
| $\Delta TOT/TOT$ (Qin>Thr + 1 ke-)     | <                             | 5%                              |
| Time-walk                              | <5                            | 0 ns                            |
| Threshold variation before adjustment  | ~240                          | e <sup>-</sup> rms              |
| Threshold variation after adjustment   | ~35                           | e <sup>-</sup> rms              |
| Minimum detectable charge              | ~65                           | 10 e <sup>-</sup>               |
| TOT energy resolution after correction | 1300 e                        | FWHM                            |
| Static pixel analog consumption        | ~6.5                          | 5 μW                            |
| Static pixel digital consumption       | ~7 µW @ Ref                   | _Clk =80 MHz                    |

![](_page_28_Picture_3.jpeg)

![](_page_29_Picture_0.jpeg)

# HOW CAN WE ADD MORE FUNCTIONALITY TO NEW DETECTORS?

![](_page_29_Figure_3.jpeg)

| DFF_skt      |  |
|--------------|--|
| Medipix2_lib |  |
| 250nm        |  |
|              |  |

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

65nm

![](_page_29_Picture_10.jpeg)

This applies only to digital components

![](_page_30_Picture_0.jpeg)

### **MOTIVATION FOR THE MEDIPIX3 CHIP**

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

Simulation: L. Tlustos

![](_page_31_Picture_0.jpeg)

## **MOTIVATION FOR THE MEDIPIX3 CHIP**

![](_page_31_Figure_2.jpeg)

![](_page_31_Picture_3.jpeg)

Simulation: L. Tlustos

# CHARGE RECONSTRUCTION AND HIT ALLOCATION

![](_page_32_Figure_1.jpeg)

1. TH<sub>0</sub> is applied to the local signal

2. Arbitration circuitry identifies the pixel with largest charge and supresses the pixels with lower signal

3. In parallel, the charge has been reconstructed in the analog summing circuits

4. The pixel with highest charge checks the adjacent summing circuits to see if at least one of them exceeds TH<sub>1</sub>

Slide by R. Ballabriga

![](_page_33_Picture_0.jpeg)

## **MOTIVATION FOR THE MEDIPIX3 CHIP**

![](_page_33_Figure_2.jpeg)

- Simulated Data
- Si 300mm, 55mm pixel
- 10keV monochromatic photon beam
- In the new architecture charge sharing tail is eliminated

![](_page_33_Picture_7.jpeg)

Simulation: L. Tlustos

![](_page_34_Picture_0.jpeg)

## **MOTIVATION FOR THE MEDIPIX3 CHIP**

![](_page_34_Figure_2.jpeg)

- Simulated data
- CdTe 300mm 110mm pixel pitch
- 40keV monochromatic beam
- Fluorescence photons are included in charge sum if their deposition takes place within the volume of the pixels neighbouring the initial deposition

![](_page_34_Picture_7.jpeg)

Simulation: L. Tlustos

![](_page_35_Picture_0.jpeg)

## **MEDIPIX3RX OPERATING MODES**

![](_page_35_Picture_2.jpeg)

![](_page_36_Picture_0.jpeg)

#### **MEDIPIX3RX PIXEL LAYOUT**

![](_page_36_Figure_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_37_Picture_0.jpeg)

# FINE PITCH, SINGLE PIXEL MODE

![](_page_37_Figure_2.jpeg)

- 55mm pixel pitch
- 2 thresholds/pixel
- 2 counters

• Pixels work independently from one another

![](_page_37_Picture_7.jpeg)

![](_page_38_Picture_0.jpeg)

# FINE PITCH, CHARGE SUMMING MODE

![](_page_38_Figure_2.jpeg)

- 55mm pixel pitch
- Reconstruction over overlapping 110mm x 110mm areas
- 2 thresholds/pixel (1 for local charge/1 reconstructed charge)
- 2 counters
- Advantage of small pixels without disadvantage of charge sharing

![](_page_38_Picture_8.jpeg)

![](_page_39_Picture_0.jpeg)

# SPECTROSCOPIC, SINGLE PIXEL

![](_page_39_Figure_2.jpeg)

- 110mm pixel pitch
- 8 thresholds/pixel
- 8 counters

![](_page_39_Picture_6.jpeg)

![](_page_40_Picture_0.jpeg)

# **SPECTROSCOPIC, CHARGE SUMMING**

![](_page_40_Figure_2.jpeg)

- 110mm pixel pitch
- Reconstruction over 220um x
  220um area
- 8 thresholds/pixel (4 for local charge/4 reconstructed charge)
- 8 counters

#### Common to all configurations:

- 4 selectable gain mode
- Possibility of Continuous Acquisition/Readout

![](_page_40_Picture_10.jpeg)

![](_page_41_Picture_0.jpeg)

### <sup>109</sup>Cd 55um, 300um Si

![](_page_41_Figure_2.jpeg)

Measurement in HGM @ very low flux conditions Raw data, No realignment in data, by R. Ballabriga

![](_page_41_Picture_4.jpeg)

![](_page_42_Picture_0.jpeg)

#### 60keV, 110um 2mm, CdTe

![](_page_42_Figure_2.jpeg)

Energy spectra measurements by T. Koenig

![](_page_42_Picture_4.jpeg)

![](_page_43_Picture_0.jpeg)

## **IMAGING A uSD CARD IN CSM**

![](_page_43_Picture_2.jpeg)

μ**Sd card** 4x3 tiles, magnification 3.2x X-ray tube voltage: 30 kVp, Tube current: 100μA, 1mm Al filtering, 5s acquisition

![](_page_43_Picture_4.jpeg)

Courtesy of S. Procz (Freiburger Materialforschugszentrum FMF, Germany)

#### MEDIPIX3RX ELECTRICAL CHARACTERIZATION

![](_page_44_Picture_1.jpeg)

|                             | SPM      | CSM       | Units                |
|-----------------------------|----------|-----------|----------------------|
| Gain (SHGM)                 | 25       | 55        | e⁻/DAC step          |
| ENC (SHGM)                  | 75       | 150       | e⁻ r.m.s.            |
| Threshold dispersion (SHGM) | 37.5     | 85.5      | e⁻ r.m.s.            |
| Peaking time                | 120      | 120       | ns                   |
| Power consumption           | 0.78     | 1         | W/chip               |
| Dead time/channel*          | 0.22/4.5 | 2.94/0.34 | μs/MHz               |
| Count rate*                 | 375      | 28        | Mc/mm <sup>2</sup> s |

\*Measurements with CdTe, 2mm thick at  $110\mu$ m pitch (paralizable model fit)

![](_page_44_Picture_4.jpeg)

![](_page_45_Picture_0.jpeg)

#### **APPLICATIONS**

![](_page_45_Picture_2.jpeg)

![](_page_46_Picture_0.jpeg)

Mouse paw 10x (25s acq / 15 tiles) (Entire dynamic range) energy: 30 kVp, power: 3.0 W threshold 0: 50 (DAC value) magnification: 10x (~5µm pixel resolution)

![](_page_46_Picture_2.jpeg)

SE

*Courtesy of* S. Procz (*Freiburger Materialforschugszentrum FMF, Germany*)

![](_page_47_Picture_0.jpeg)

Mouse paw 10x (25s acq / 15 tiles) (Entire dynamic range) energy: 30 kVp, power: 3.0 W threshold 0: 50 (DAC value) magnification: 10x (~5µm pixel resolution)

> Mittuniversitetet MID SWEDEN UNIVERSITY

SE

*Courtesy of* S. Procz (*Freiburger Materialforschugszentrum FMF, Germany*)

# ENERGY SELECTIVE, PLANAR IMAGING MIUN.SE

#### **Piezo Lighter**

Magnification: 1.3x Bias: -320V MPX3 CdTe 1mm Color Mode 4x11 tiles

1 acquisition, 4 thresholds

Courtesy S. Procz

![](_page_48_Picture_5.jpeg)

![](_page_48_Picture_6.jpeg)

![](_page_49_Picture_0.jpeg)

# SPECTROSCOPIC COLOUR IMAGING

![](_page_49_Picture_2.jpeg)

**Iodine: Pulmonary** circulation **Barium: Lung Bone: normal structure** 

![](_page_49_Picture_4.jpeg)

Courtesy: A. Butler

![](_page_50_Picture_0.jpeg)

# **BASIC PARTICLE IDENTIFICATION**

- Mixed radiation fields poses problems for dosimetric measurements.
- An advantage of a pixelated detectors is that particles can be identified by their track shape.
- This is based on the different ways the particles interact in the sensor.

![](_page_50_Picture_5.jpeg)

![](_page_51_Picture_0.jpeg)

# **EXAMPLE OF PARTICLES**

![](_page_51_Figure_2.jpeg)

0.5MeV Electron (<sup>90</sup>Sr)

134

![](_page_51_Figure_4.jpeg)

60keV Photons (<sup>241</sup>Am)

![](_page_51_Figure_6.jpeg)

Pb ion with delta rays Erik Heijne [2]

![](_page_51_Picture_8.jpeg)

![](_page_52_Picture_0.jpeg)

# **EXAMPLE OF PARTICLES**

![](_page_52_Figure_2.jpeg)

![](_page_52_Picture_3.jpeg)

L. Pinsky et al., Proc. IEEE Aerospace Conf., 2007.

![](_page_53_Picture_0.jpeg)

# **TIMEPIX DETECTORS AT ISS**

- 5 Timepix Usb Lite detectors with 300um Si sensors are currently in operation at the ISS
- Evaluated as an option for radiation field monitors and personal dosimeters
- Mixed radiation field
- Important to get the right quality factor for heavy ions

![](_page_53_Picture_6.jpeg)

![](_page_53_Picture_7.jpeg)

![](_page_53_Picture_8.jpeg)

![](_page_53_Picture_9.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_55_Picture_0.jpeg)

## **TIMEPIX DETECTORS AT ISS**

![](_page_55_Figure_2.jpeg)

Heavy Ion fragment, Q factor ~ 25

![](_page_55_Figure_4.jpeg)

![](_page_55_Picture_5.jpeg)

![](_page_56_Picture_0.jpeg)

## DEMONSTRATION

![](_page_56_Picture_2.jpeg)

![](_page_57_Picture_0.jpeg)

# BASIC PARTICLE IDENTIFICATION: CONCLUSIONS

- Possible to categorize particles using track and energy information
- Some types of particles are hard or impossible to separate
- Additional convertors and filters improve the detection specificity

![](_page_57_Picture_5.jpeg)

β<sup>-</sup> radiation orCompton electrons?

![](_page_57_Picture_7.jpeg)

![](_page_58_Picture_0.jpeg)

# OUTLINE AND HIGHLIGHTS FROM MY RESEARCH

- Characterization of CdTe sensors bump bonded to Timepix (in collaboration with Glasgow University and Diamond Light Source) []
- Investigation of excess noise in Timepix ToT mode.
- Long time stability of Timepix
- Radiation hardness characterization of Medipix3RX
- Count rate linearity and energy response of Medipix3RX in high flux conditions

![](_page_58_Picture_7.jpeg)

![](_page_59_Picture_0.jpeg)

### **PUBLICATIONS**

- 1. Frojdh, E.; et al., *Probing Defects in a Small Pixellated CdTe Sensor Using an Inclined Mono Energetic X-Ray Micro Beam, Nuclear Science, IEEE Transactions on*, vol.PP, no.99, pp.1,1, 0doi: 10.1109/TNS.2013.2257851
- 2. FRÖJDH, C.; NORLIN, B.; FRÖJDH, E. Spectral X-ray imaging with single photon processing detectors. *Journal of Instrumentation*, 2013, 8.02: C02010.
- 3. BALLABRIGA, R., et al. The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. *Journal of Instrumentation*, 2013, 8.02: C02016.
- 4. E. Fröjdh, C. Fröjdh, E.N. Gimenez, D. Maneuski, J. Marchal, B. Norlin, V. O'Shea, G. Stewart, H. Wilhelm, R.M Zain and G. Thungström, *Depth of interaction and bias voltage depenence of the spectral response in a pixellated CdTe detector operating in Time-OverThreshold mode subjected to monochromatic X- rays.* 2012 JINST 7 C03002 doi:10.1088/1748-0221/7/03/C03002
- 5. D. Maneuski, V. Astromskas, E. Fröjdh, C Fröjdh, E.N. Gimenez, J. Marchal, V. O'Shea, G. Stewart, N. Tartoni, H. Wilhelm, K. Wraight and R.M. Zain *Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector* 2012 JINST 7 C01038 doi:10.1088/1748-0221/7/01/C01038
- 6. S. Reza, W.S. Wong, E. Fröjdh, B. Norlin, C. Fröjdh, G. Thungström and J. Thim *Smart dosimetry by pattern recognition using a single photon counting de- tector system in time over threshold mode* 2012 JINST 7 C01027 doi:10.1088/1748-0221/7/01/C01027
- 7. E. Fröjdh, B. Norlin, G. Thungström and C. *Fröjdh X-ray absorption and charge transport in a pixellated CdTe detector with single photon processing readout* JINST 6 P02012 doi:10.1088/1748-0221/6/02/P02012
- E. Fröjdh, A. Fröjdh, B. Norlin, C. Fröjdh, Spectral response of a silicon detector with 220µm pixel size bonded to MEDIPIX2, NIM-A:, Volume 633, Supplement 1, May 2011, Pages S125-S127, ISSN 0168-9002, doi: 10.1016/ j.nima.2010.06.143.
- A. Fröjdh, E. Fröjdh, G. Thungström, C. Fröjdh, B. Norlin, *Processing and characterization of a MEDIPIX2-compatible silicon sensor with 220µm pixel size* NIM-A, Volume 633, Supplement 1, May 2011, Pages. S78-S80, doi: 10.1016/j.nima.2010.06.128.

![](_page_59_Picture_11.jpeg)

![](_page_60_Picture_0.jpeg)

What are the future chips expected from the Medipix Collaboration?

#### **OUTLOOK**

![](_page_60_Picture_3.jpeg)

# **TIMEPIX3**

![](_page_61_Picture_1.jpeg)

- Design effort shared between CERN, Bonn university and Nikhef
- Applications: Particle tracking by time stamping and total deposited charge measurement
- 256x256 pixel matrix, 55x55µm<sup>2</sup> pixels
- CMOS 0.13μm technology
- Simultaneous measurement of ToA and ToT per event (48bits/event)
- Packet-based data-driven readout (readout associated dead time of 375ns)
- Maximum dead time free hit rate of 40 10<sup>6</sup> hits/s cm<sup>2</sup> (randomly distributed hits)
- Programmable shutdown/wake-up feature for the front end (analog domain) and/or general clock gating (digital domain)

![](_page_61_Picture_10.jpeg)

# **PIXEL REQUIREMENTS**

![](_page_62_Picture_1.jpeg)

| Pixel size                       | 55 μm x 55 μm                                   |
|----------------------------------|-------------------------------------------------|
| Global Time stamp (bunchID)      | 40 MHz (25ns)                                   |
| Global Time stamp range          | 14bits (409.6 μs)                               |
| Accurate Time stamp per pixel    | 4bits $\rightarrow$ 1.56ns resolution (640 MHz) |
| Local Oscillator frequency       | 640 MHz (shared by 8 pixels)                    |
| On-pixel local oscillator tuning | Locked using periphery PLL                      |
| TOT range                        | 10 bits (@ 40 MHz)                              |

![](_page_62_Picture_3.jpeg)

# **PIXEL OPERATION MODES**

![](_page_63_Picture_1.jpeg)

| Readout Operation Modes    | Op_mode |                                                                                               |
|----------------------------|---------|-----------------------------------------------------------------------------------------------|
| ToA & ToT                  | 00      | Fast Time (4b @ 640 MHz)<br>ToA (14b @ 40 MHz)<br>ToT ( 10b @ 40 MHz)<br>Pixel coordinate 16b |
|                            |         | Double hit resolution: 375ns                                                                  |
| Only ToA                   | 01      | Fast Time (4b @ 640 MHz)<br>ToA (14b @ 40 MHz)<br>pixel coordinate 16b                        |
|                            |         | Double hit resolution: 375ns                                                                  |
| Event Count & Integral ToT | 10      | Event count 10b<br>Integral ToT (14b @ 40 MHz)<br>pixel coordinate 16b                        |
|                            |         | Shutter-controlled operation                                                                  |
|                            |         | Non-continuous with Zero Suppression                                                          |
|                            |         | Full chip readout time: 1.6 ms @ 320MHz and 8 SLVS lines                                      |

![](_page_63_Picture_3.jpeg)

# **SMALLPIX**

![](_page_64_Picture_1.jpeg)

- Developed in the framework of the Medipix3 collaboration
- Applications: Particle tracking by time stamping and total deposited charge measurement
- 512x512 pixel matrix, ~40x40mm<sup>2</sup> pixels
- CMOS 0.13mm technology
- Simultaneous measurement of ToA + ToT1 or PC + iToT
- Frame based readout with zero compression (on-pixel and percolumn)
- Fast OR
- Shutdown/wake-up feature for the front end
- Design compatible for Through Silicon Via technology

![](_page_64_Picture_11.jpeg)

![](_page_65_Figure_0.jpeg)

![](_page_65_Picture_1.jpeg)

![](_page_66_Picture_0.jpeg)

Target Active area TSV connections ~100% Chip can be tiled on 4 sides

![](_page_66_Picture_2.jpeg)

# **CLICPIX PROTOTYPE**

![](_page_67_Picture_1.jpeg)

![](_page_67_Picture_2.jpeg)

Designed in collaboration with the CERN Linear Collider Detector group

ASIC in 65nm CMOS technology designed to fulfill the specifications for the future CLIC vertex detector

- 25x25  $\mu$ m<sup>2</sup> pixel, 64x64 pixel matrix
- Simultaneous 4-bit ToA and TOT measurement
   @100MHz
- Frame based with zero suppression
- Power pulsing

Preliminary characterization on the 65nm CMOS technology done

First prototype chip with full pixel functionality to be tested in coming weeks

![](_page_67_Picture_11.jpeg)

![](_page_68_Picture_0.jpeg)

# TRENDS FOR NEW DETECTORS AND FUTURE RESEARCH

- More complex processing on chip
- Faster communication
- Larger systems
- Increased costs
- Moving into medical applications
- ....

![](_page_68_Picture_8.jpeg)