

Mapping the Asymmetry in the SAA Fluxes Using the Medipix Particleby-Particle Directional Information

S. P. George^{1,2,7}, A. Empl¹, J. Idarraga-Munoz¹, M. Kroupa^{1,3}, H. M. Son¹, N. N. Stoffle^{1,2,3}, E. J. Semones², C. Amberboy^{2,3}, B. G. Swan², A. A. Bahadori², S. A. Wheeler², D. Turecek^{1,5}, S. Pospíšil⁵, J. Jakubek⁵, Z. Vykydal⁵, H. Kitamura⁶, & S. Kodaira⁶, L. S. Pinsky¹

- ¹ Physics Department, University of Houston, Houston, TX, USA <pinsky@uh.edu>
- ² NASA Johnson Space Center, Houston, TX, USA
- ³ Wyle Integrated Science and Engineering , Houston, TX, USA
- ⁴ University of Houston-Downtown, Houston, TX, USA
- ⁵ Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic
- ⁶ National Institute for Radiological Sciences, Inage, Japan
- ⁷ ARDENT Program, CERN, Geneva, Switzerland

0.5s in South Atlantic Anomaly, Wed Apr 02 2014 12:24:03 Dose Rate = 30 uSv/hr

Calculation of Track Angles in Timepix

- 4π view of sky, 1π discrimination (slope cannot tell up from down, projection of a line symmetric around 180 degrees)
- Assumption of sensor penetration for slope, work on corrections for stopping protons in progress.

Slope Calculation for Heavier Tracks

"LET Estimation of Heavy Ion Particles based on a Timepix- Based Si Detector", Hoang et al (2012)

Caveats - Limitations of Angular Discrimination

- Limits of around 15 degrees on θ for low φ
- Detectors move around
- Detectors change their view of the sky

Low φ (perpendicular) tracks (poor θ discrimination)

Angular space wraps in the timepix High φ tracks (good θ discrimination)

GCR Angular Distributions 1st April 2014

500 um unit

Angular distribution of tracks - GCR Frames, April 1 2014, REM J02

Angular distribution of tracks - GCR Frames, April 1 2014, REM I04

SAA Angular Distributions 1st April 2014

500 um unit

Angular distribution of tracks - SAA Frames, April 1 2014, REM J02

Angular distribution of tracks - SAA Frames, April 1 2014, REM I04

https://dl.dropboxusercontent.com/u/46291346/ SAA_20_4_2013.mp4

- SAA associated with change in average angle
- Average theta for GCR (~5 degrees)
 offset
- Average GCR phi 40 degrees) should be 45

Angle and Dose Rate

Average Theta

- SAA associated with change in average angle
- Average theta for GCR (~5 degrees)
 offset
- Average GCR phi 40 degrees) should be 45

Dose Rate (uGy/min)

DOM (April 2014)

Mean Chord Lengths

Acknowledgements

This research project has been supported by the Marie Curie Initial Training Network Fellowship of the European Community's Seventh Framework Programme under Grant Agreement PITN-GA-4 2011-289198-ARDENT.

