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Particle Tracking with Gempix - a Timepix Based Gas Detector
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How does the Gempix Work?

• Initial electrons created by an 
interaction are transported by 
electric fields to the GEM foils. 

• Each GEM foil creates up to 40 
output electrons for each 
electron in, three GEM foils give 
gains up to 105 (depending on 
the gas) 

• These electrons are collected by 
the Timepix, ~1000 electrons is 
enough to trigger a pixel (high 
gain operation)
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GEM Detectors

• A GEM consists of a large kapton 
sheet with both sides metallized 

• A potential is placed across both 
sides and tiny holes etched in the 
detector 

• Electrical fields can reach ~100 
kV/cm inside the holes, allowing 
for a localised electron 
avalanche
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GEM Detectors
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7 Independent electric fields - GEM 1,2,3 control the gas gain
EDrift, ETransport, and EInduction transport electrons through the 

detector



The Gempix - An Ultra Pixellated Gas Detector
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Sensitive area = 3 x 3 
x 1.2 cm3



The Timepix - a quick intro
• The timepix asic consists of 256 x 

256 CMOS pixels each measuring 
55 x 55 um. 

• Each pixel can either measure 
charge deposited or do single 
particle counting. 

• The detection threshold is about 
1000 electrons, noise width about 
100 electrons 

• We use a quad configuration of 
512x512 pixels for a total of 
262144

Timepix ASIC Wafer

Timepix mounted on CERN probe card 
with Si sensor
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• Medipix (pulse counting)

• TOA (Time of arrival)

• TOT (Charge surrogate measurement as a Wilkinson ADC)

• TOA/TOT achieved with an on chip clock synchronised to all pixels (up to 100 Mhz, 
but 50 stable)

The Timepix Pixel
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Gain Scan with Fe55

Working point at 1230 V

Number of Clusters as a 
function of gain

Cluster TOT as a function 
of gain



Alpha Particles (~6 MeV 
Am241)

Working point at Gain ~950V, compare with 1230V for Fe55

Number of Clusters as a 
function of gain

Cluster TOT as a function 
of gain
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TOT in Cluster
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IKrum = 5
IKrum = 10
IKrum = 20
IKrum = 50

Maximum Count Rate (Xray tube, 40 kVp)

• Single interaction defined 
with clusterable data  

• Maximum count rate ~107/s 
(106/cm2/s) 

• Some room for optimisation 
by changing asic settings 
(factor 2 variation) 

• Possibly an effect of the 
relatively high gain needed 
to readout the Timepix?
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Fig 12
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Mixed Mode Operation
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An Application - Microdosimetery
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• The study of radiation 
interactions at the scale of 
cellular structure 

• The number of atoms in a 5 
mm path in gas is about the 
same as in a cellular 
nucleus 

• Typical instrumentation is a 
single low pressure gas 
volume or silicon volume 

• Gas pixel detectors offer 
the ability to examine each 
track individually
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Hadron Therapy
• Hadron therapy uses beams of Protons and Carbon 

ions to treat cancer 

• Exploits the energy deposition properties of charged 
hadrons (Bragg peak)



Hadron Therapy
• ~30 centers world wide (Majority 

in USA, then Japan) 

• ~150 million for one centre (~2k 
patients/yr) 

• Economics arguments often 
produce numbers such as 1 
centre per ~20 million people - 
though cost benefit is contentious 

• Limited QA tools compared to 
photon therapy

Beamline Aperture

Movable patient table

Experimental 
phantom
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Proton radiation therapy is potentially a better way to treat cancer 
because it has fewer side effects, but the technology is still very 
expensive. The University of Florida Proton Therapy Institute 
required eight years and $125 million to build, and it can serve up 
to 150 patients a day.

Cyclotron
Using magnetic fields, the cyclotron 
can accelerate the hydrogen protons to 
two-thirds the speed of light.

Electromagnets
The magnets focus  
the proton beams toward  
the gantry.

Nozzle
A 21,000-pound magnet guides the beam 
to the patient through a nozzle.

Gantry
The gantry can rotate 360˚ around the 
patient to position the nozzle.

Nozzle

Patient

The brass aperture and the Lucite com-
pensator are designed to squeeze  
the proton beam to the size and shape 
of the area being treated.

The Nozzle

Brass aperture

Lucite  
compensator

Proton radiation 
therapy

Conventional X-ray 
therapy

By adjusting the speed of the protons,  
a physician can control how deep their 
penetration will be. The protons then  
release their energy at the tumor and 
cause less damage to the surrounding  
tissue.

Because conventional radiation doesn’t 
release its energy at a specified depth, 
it can cause more damage to the tissue 
surrounding the tumor. 

Tumor

3

41

2

 Pummeling 
Cancer With 
Protons

Credit New York Times



Beam Monitoring Measurements 
for Hadron Therapy

• Proton beams at 
CNAO (National 
Centre of Oncological 
Hadrontherapy) in 
Pavia, Italy  

• Started treatment in 
2011 

• Proton fluences 
~1010/cm2s



Proton Beam at Different 
Gains
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Proton Beam at Different 
Gains
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Gempix as a Beam Monitor
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Spot Scan …



Detector Linearity
90s measurement, 1s 
spill, spill every 5 
seconds 

Counts are the integral 
over the total 90s period 

Number of ions is the 
counts/average carbon 
cluster size (~130 pixels) 

(Dead time is significant 
however ~1/10)
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Energy Deposition Measurements 
for Hadron Therapy

• 480 MeV/A Carbon Ion Beam at CNAO 

• 23 different depths throughout water phantom 

• Each position given spot 107 carbon ion treatment
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Patient-specific treatment plan verification in Hadrontherapy:

GEANT4 simulation of a GEM detector as beam monitor 
Adele Rimoldi1,2, Marco Silari3, Fabrizio Murtas3,4, Aurora Tamborini2, Stuart George3,

Mario Ciocca5, Alfredo Mirandola5, Cristina Riccardi1,2

1University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, 27100 Pavia (Italy), 
2INFN Section of Pavia, via Bassi 6, 27100 Pavia (Italy), aurora.tamborini@unipv.it

3CERN, Geneva 23, 1211 Geneva, Switzerland
4Laboratori Nazionali di Frascati dell’ INFN, Via Fermi 40, 00044, Frascati, Italy
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Purpose
The aim of this work is the full simulation with Geant4 and the characterization of a 

GEM (Gas Electron Multiplier) detector on carbon ion beams at CNAO (National 

Center for Oncological Hadrontherapy, Pavia – Italy). 

A triple GEM detector [1] could provide a monitoring for the treatment plan dose 

verification with good resolution and optimal radiation background control with 

respect to the existing devices [2]. 

This investigation is intended to provide a tool for  a possible application as dose 

monitor for treatment plans verification in hadrontherapy at CNAO.

Description
• Monte Carlo Geant4 10.03 toolkit to simulate the complete CNAO extraction beamline (active 

scanning modality) [3] and the GEM detector

• Characterization of the simulated GEM detector (GEMPix [4]) response to protons and carbon ions 

in air, at isocenter with respect to CNAO reference detectors (EBT3 radiochromic films)

• Measurements on the GEMPix detector at CNAO

Carbon ion beams spot transverse FWHM at different depth in water.

Carbon ions Bragg peak in water.  

• Comparison between simulation and experimental data

/

Physics Lists: HADRONTHERAPY_1 for protons and QGSP_BIC_HP for 

carbon ions [5].

Geometry settings: Parallel geometries for scoring purposes and 

sensitive detectors. CNAO beam-line , and GEM detector 

implementation (in air and in a water phantom).

Simulation settings
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CNAO data vs simulated GEM response
6 x 6 cm2 radiation fields transversal profilesBeam spot profiles

CNAO data courtesy of A. Mairani
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Depth dose distribution (GEMPix data) – 3D reconstruction dataset 

• The beam enters 

from right

• The carbon 

fragmentation tail is 

clearly visible on the  

left.

Geant4 simulation data comparison.

The sigma value is extracted from the

Gaussian fit of the lateral profile 

• The agreement between simulation and preliminary data collected  with the GEMPix detector  

suggest that this tool can  be used for  reconstruction of the Bragg peak in a water phantom 

together with the evaluation of the fragmentation tail.

• Further measurements and simulations are planned  to allow the inclusion of a GEMPix detector in  

a 3D motorized water phantom and operate it for  Quality Assurance (QA) tests.

• Studies are underway to exploit the potential of GEMPix for microdosimetry.

Simulation setup #2
Water phantom

(to simulate the 

Bragg curve)

Simulation setup #1
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PMMA waterproof case 

for GEMPix (2 mm thick)

Stepper motor

(10 μm step)

PTW water 

phantom

GEMPix detector  layout
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Experimental setup scheme

Ripple filters are added to the beam line  only with carbon ions

This detector couples a Triple GEM detector with a 

timepix asic for readout [6].

• Active area: 28 mm x 28 mm

• Quad timepix asic output with 512 x 512 pixels

• FITPix: Fast Interface for Timepix pixel detectors

• Pixel dimensions:   55μm x 55μm

• Measurements at 37 different depths through 

motorized water phantom-> Reconstruction of the 
Bragg peak curve

• Carbon ions energy: 332.15 MeV/u (3.98 GeV)

• Particle flux : 8 x106 carbon ions (lower than clinical 
treatment intensities to avoid saturation)

• Acquisition software: Pixelman and Labview

framework

• Frame length : 20 ms and 100 ms

(respectively before and after the Bragg peak)

• After validation tests-> I
KRUM

value set to 20

• Asic in TOT mode -> Threshold value: 392 counts
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Carbon ion beams spot at a depth of 120.0 mm in the water phantom

SEU events above (red) and 

below (orange) the TOT 

saturation level (11000)

zoom

SEU as a function of 
depth in water phantom

As expected, the 

maximum number of SEU 

events corresponds to 

the Bragg peak position, 

where the dose

release is higher.

• “Fish eye” at the peak

• Simulation setup #2

• Good agreement between simulation and experimental data 

around the peak and the plateau region.

• The simulation of secondary particle production in the 

fragmentation tail will be refined by taking into account the GEMPix 

particle detection efficiency.
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of depth in water

FWHM of protons and 
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isocenter (simulation setup 

#1/ GEMPix) compared with 

CNAO data from EBT3 films

81.56 MeV protons scanned field 

1.808 GeV carbon ions scanned field 

Results at CNAO

Simulation/figure by A. Tamborini 
Systematic underdose in fragment tail needs to be 
explained
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Future Thoughts
• A GEMPix based on the new Timepix3 ASIC will solve 

many of the dead time issues in tracking. 

• GEMPix as a microdosimeter is mainly advantageous 
over normal TEPC’s because it measures track by track. 
Possibility to operate at low pressure as a nano-
dosimeter

• Work is underway to perform the CNAO measurements 
much faster using better integration with the CNAO 
beam delivery system. In this application it may be 
useful for realistic QA.
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