

Study of Fast Neutron Interactions in Silicon by Timepix detectors

B. Bergmann^{a)}, I. Caicedo^{a)}, E. Fröjdh^{d)}, J. Kirstead^{c)}, S. Pospisil^{a)}, H. Takai^{c)}, D. Turecek^{a)}, Z. Vykydal^{e),a)} and S. Wender^{b)}

a) Institute of Experimental and Applied Physics, Czech Technical University in Prague

- b) Los Alamos Neutron Science Center, Los Alamos National Laboratory
- c) Brookhaven National Laboratory
- d) CERN
- e) Czech Metrology Institute

INTRODUCTION

Detectors, neutron source, data evaluation techique, ...

Timepix Detectors

Timepix detectors

- Hybrid pixel detectors
- Developed at CERN
- 256 x 256 pixel
- Pixel pitch: 55µm
- Silicon sensor layer flip-chip bump bonded to the ASIC

Timepix:

- Thickness: 1mm
- Depletion voltage: 400V
- Framebased readout (Acq.time 100µs, dead time ~ 11ms)
- Measurement of either energy or time (used in the time mode: resolution 20.6 ns)
- Threshold set to 4.5 keV

□ Timepix 3:

- Thickness: 300µm
- Depletion voltage: 90V
- Data driven readout (Maximal count rate 40 Mpix/s)
- Measurement of energy and time, simultaneously (time resolution 1.56 ns)

LANSCE

 Threshold set to 5 keV (down to ~2 keV possible)

Los Alamos Neutron Science CEnter (LANSCE)

15L 30L

4

LANSCE

LANSCE: Detector setup and neutron energy spectrum

Investigated detectors $d_{IP} = 20.8 \text{ m}$

STEF

Pattern recognition – definition of different cluster types

the LANSCE neutron beam.

Jniversity in Prague and Applied Physics

nstitute of Experimental

Czech Technical

TIMEPIX

Results and discussion by means of radiation damage

TIMEPIX: Cluster shapes (detector responses) as a function of neutron kinetic energy

The ToF technique^{*)} was used to assign the detector responses to the corresponding neutron energies (track by track).

Institute of Experimental and Applied Physics **Technical University in Prague** Czech

- Dots, small blobs (LETE)
- Displacement damage

- Heavy tracks and heavy blobs (HETE)
- Single Event Upsets (SEU) and Multiple Bit Upsets (MBU), permanent damage

and Applied Physics University in Prague

nstitute of Experimental

Czech Technical

TIMEPIX3

First look and preliminary results ...

Timepix3 CERN chip board

Benedikt Bergmann - RAD 2015

TIMEPIX3: Cluster shapes (detector responses) as a function of neutron kinetic energies

- Same behaviour as for Timepix
- Better time resolution leads to better selection of neutron kinetic energies

TIMEPIX3: Examples of energy spectra for selected neutron energy intervals

LANSCE

Neutron elastic scattering

Energy transfer to the silicon nucleus:

$$T_{Si,max} = \frac{4M_{Si}m_n}{(M_{Si} + m_n)^2} T_n = 0.133 \cdot T_n$$

 \rightarrow Energy goes partly into displacement (NIEL) and ionization

Neutron elastic scattering

LANSCE

Energy transfer to the silicon nucleus:

$$T_{Si,max} = \frac{4M_{Si}m_n}{(M_{Si} + m_n)^2} T_n = 0.133 \cdot T_n$$

 \rightarrow Energy goes partly into displacement (NIEL) and ionization

Neutron scattering: Losses by ionization vs losses due to displacement

*) The formulae for the calculation can be found in: C. Leroy and P.-G. Rancoita, Rep. Prog. Phys. 70 (2007) 493-625

Applied Physics ersity in Prague

University in

Czech Technical

and

nstitute of Experimental

SUMMARY AND CONCLUSION

- The response in the form of tracks of a hybrid active pixel detector with silicon sensor layer for different neutron energies was studied by using the ToF technique
 - Different track shapes indicate the different interactions and energy depositions in the sensor layer
 - The detector responses were tried to be interpreted in the context of radiation damage
- A newly developed type of Timepix detectors was tested in the measurement for the first time allowing the simultaneous measurement of energy and time
 - Study the non-ionizing vs. ionizing energy losses (especially for the lower energy region)
 - Deeper insight of the processes leading to the different cluster shapes
 - Understand the nature of SEU and MBU (by coincidence measurement with failures of electronic devices)

Thank you for your attention!

Benedikt Bergmann - RAD 2015