

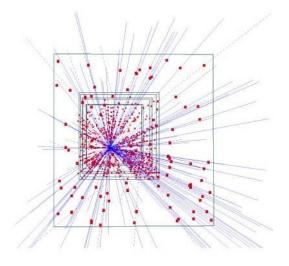
MX-10: PIXEL PARTICLE DETECTOR

V. Viswanathan, S. Martinek, M. Honig, P. Hubner

IEEE-NSS: New Detector Technologies in Radiation Dosimetry and its Applications Workshop

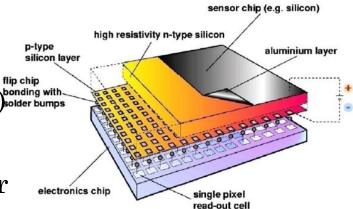
Dr. Vijayaragavan VISWANATHAN

vijay@jablotron.cz

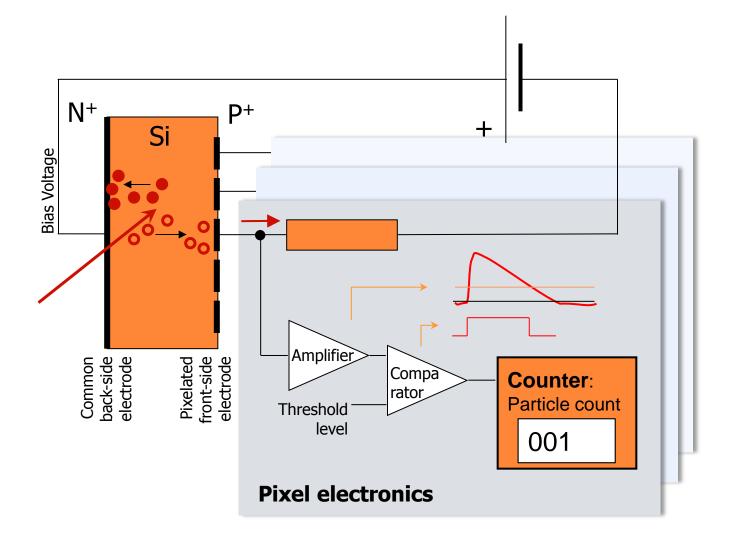


CONTENTS

- Introduction
- Design
- Educational kit setup
- Conclusion

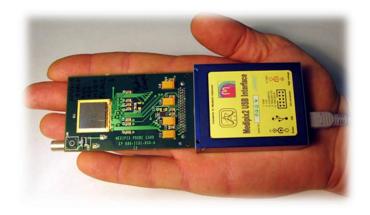

Introduction

- Medipix/Timepix technology
 - Successful initiative by CERN
 - Hybrid silicon pixel detector
 - Outcome of more than 10 years of research
 - Technology
 - High energy physics to other fields
 - Collaboration with
 - Universities, research centers and private companies
 - Educational application
 - Portability
 - Flexibility
 - Easy of use


MEDIPIX/TIMEPIX

Chip features

- 256 x 256 pixels
- Pixel size: 55μm x 55μm
- Active area 14mm x 14mm
- Recognition of particles (α,β,γ,MIP) colder bumps
- Real time display using Pixelman
- Each pixel connected to lower layer
 - Amplifier, comparator and counter
 - Bump bonding technology

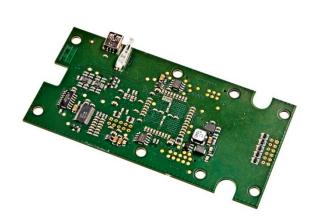


PRINCIPLE

CHIPBOARD

- Composed of
 - Timepix detector
 - Readout interface
- Redesigned chipboard
 - Chip placement
 - Top layer Chip Manufacturability
 - Chip covering Wire bond protection
- Earlier version Fitpix @IEAP


CHIP BOARD


- Interface
 - Serial flash
 - 1MB
 - Store configuration files
 - Freedom of connection to any baseboard
 - Potentiometer
 - Voltage fine tuning
 - Elimination of wide-connector coaxial cable
 - Adjustable voltage settings
 - · Any chipboard can be connected to any baseboard
 - Portability, manufacturability and reliability
 - Parallel readout to baseboard improving overall readout speed
 - ~28% reduction in area
 - 6 layer PCB

BASE BOARD

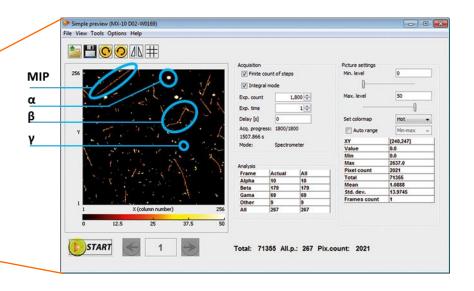
- Composed of
 - Altera FPGA
 - Power supply circuitry
 - USB 2.0 hi-speed interface
- Improvements
 - 150fps compared to 80fps
 - Dedicated FTDI channel for EEPROM updates
 - Firmware upgrades in the field
 - Better power management
 - Voltage configuration software based
 - Measure currents from power rails
 - Better testing capability
 - Increased usability
- 8 layer PCB
- Powered by Mini-USB connector

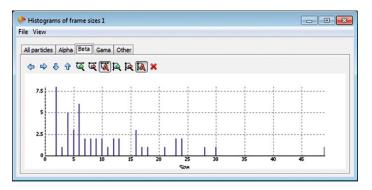
MECHANICAL DESIGN

- Housing
 - Safety of sensor and electronics
 - Durability, accessibility
 - Portability
- Early design decision
 - Placement of Mini-USB
 - Placement of LED
 - Green Ready
 - Red Busy
- Sliding flip
 - Safety of sensor
 - Experiments without alpha

MECHANICAL DESIGN


- Mount
 - Standard tripod screw
- Device weight 160g
- Certified with


EN 61000-6-1 and EN 61000-6-3 standards
Test bench for experiments



EDUCATIONAL KIT SETUP

- MX-10 digital particle camera
- Test bench with source
- Pixelman software

Pixelman software output

CONCLUSION

- Key accomplishments
 - Improved performance
 - Area
 - Speed
 - Design modification to
 - Bring research to market
 - Meet the market requirement
 - Ready for parallel readout
- Future
 - Improving the speed
 - Timepix technology for
 - Homeland security
 - Industrial applications

ACKNOWLEDGEMENT

- Colleagues at Jablotron Alarms
 - CEO Mr.Dalibor Dedek
 - · Pavel Hubner, Stepan Martinek, Martin Honig
 - Vladimir Stanislav, Stefan Vanco
- IEAP
- ARDENT
- Medipix
- CERN

To play with MX-10 Please visit us at Industrial exhibition:

Booth no: 18