

Simulation of Neutron Dosimetry with CR-39 Track Detectors and Comparison against Experimental Campaigns

Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27th October 2013 Workshop: NWK3/RD1 – Radiation Protection and Dosimetry

M. Caresana^a, <u>A. Sashala Naik^{a,c}</u>, S. Rollet^b, M. Ferrarini^{a,d}

^aPolytechnic of Milan, Department of Energy, Milan, Italy ^bAIT – Austrian Institute of Technology, Vienna, Austria ^cMi.am srl, Fabiano di Rivergaro, Italy ^dCNAO – National Centre for Oncological Hadrontherapy, Pavia, Italy

ARDENT is a Marie Curie Initial Training Network funded by the European Commission 7th Framework Programme, Grant Agreement 289198.

Outline

- Neutron dosimetry with CR-39 track detectors \odot
- Irradiation in 0.5 to 100 MeV monoenergetic (PTB -Germany) and quasi-monoenergetic (Ithemba labs - South Africa) neutron beams
- Monte Carlo simulations and comparison with Experiments
- **Conclusion & Perspectives**

Neutron Dosimetry with CR-39 detectors

B. Dorschel et al. / Radiation Measurements 37 (2003) 563 – 571

Physics of track detectors

When an ionizing charged particle passes through a dielectric material the transfer of energy to electrons results in a trail of damaged molecules along the particle's track

The tracks can be made visible by etching in NaOH at 98°C for 90 minutes. The opening of the track is then of about 5-20 µm depending on the type and energy of the hadrons

Neutron Dosimetry with CR-39 detectors

Intercast® CR-39 track detector

Politrack[™] automatic CR-39 reader

Neutron Dosimetry with CR-39 detectors

CR-39 detector analysis with POLITRACK[™]

- Automatic counting and geometrical analysis of the tracks (a)
- Track filtering (account for dust particles or surface defects) (b)
- V_t and LET_{nc} and impinging angle determination (c)
- LET_{nc} distribution (d)

(a)

Alvin Sashala Naik - Seoul, IEEE Conference

(C)

What is LET_{nc} measured in CR-39?

Etching time 60 min Alpha energy 6.1 MeV (Cf-252)

Etching time 90 min Alpha energy 6.1 MeV (Cf-252)

$$LET_{nc} = \frac{E_i - E_r}{x} = \frac{6100 - 3350}{22.9} = 120 \begin{bmatrix} keV \\ \mu m \end{bmatrix} \qquad LET_{nc} = \frac{E_i - E_r}{x} = \frac{6100 - 0}{39.5} = 154 \begin{bmatrix} keV \\ \mu m \end{bmatrix}$$

 LET_{nc} is also commonly referred to as the mean LET.

Uses of CR-39 track detector

- O Personal dosimetry
 - Routine dosimetry in nuclear facilities
 - Hadrontherapy centers for oncology
- Ambient dosimetry
 - Stray radiation around particles accelerator
 - CERN, Paul Scherrer Institute (PSI), etc.
 - Complex radiation fields
 - In Space: International Space Spation (ISS)
 - Cosmic rays: aboard commercial aircrafts
- Advantages:
 - Cheap, easy to use, convenient size to mount as a dosimeter

Irradiation in 0.5 to 100 MeV neutrons

In the PMMA radiator, the type of secondary particles produced is strongly dependent on the neutron beam energy (E_n) :

- $E_n < 10 \text{ MeV}$: (n,p) reactions
- $E_n > 10 \text{ MeV}$: (n,p) reactions + (n, α) reactions + (n,d) reactions + (n,t) reactions

http://www.oecd-nea.org/janis/

Fragmentation of O and C atoms due to inelastic scattering as the neutron cross section becomes non-negligeable for $E_n > 10$ MeV

LET_{nc} measured in CR-39 detectors

8 MeV neutron beam

100 MeV neutron beam

Protons delivering the dose for LET < 100 keV/ μ m and heavier hadrons delivering the dose for LET > 100 keV/ μ m

Irradiation in 0.5 to 100 MeV neutrons

Measured Dose (mSv)	Reference Dose(mSv)	Detector Response
1.79	3.67	0.49
1.75	4.90	0.36
3.49	6.90	0.51
1.84	2.90	0.64
2.38	4.44	0.54
1.72	3.20	0.54
1.52	2.36	0.64
1.75	2.83	0.62
		0.54 ± 0.09
	Measured Dose (mSv) 1.79 1.75 3.49 1.84 2.38 1.72 1.52 1.75	Measured Dose (mSv) Reference Dose(mSv) 1.79 3.67 1.75 4.90 3.49 6.90 1.84 2.90 2.38 4.44 1.72 3.20 1.52 2.36 1.75 2.83

- Etching removes the first 15 µm of the surface of the detector.
- Around 50% of the dose is not measured because:
 - Hadrons impinging at a low angle with respect to the detector surface are not detected due to etching.
 - Hadrons having a low LET, e.g. protons with energy > 10 MeV are not detected due to etching
- Yet, a stable response of 0.54 ± 0.09 is measured for the whole range of neutron energies

Caresana, M., Ferrarini, M., Parravicini, A., Sashala Naik, A. *Evaluation of a Personal and Environmental Dosimeter based on CR-39 Track Detectors in Quasi-Monoenergetic Neutron Fields*. Radiat. Prot. Dosim., submitted in the proceeding of Neudos12 conference

Simulated LET distribution with FLUKA

LET distribution obtained using FLUKA for <u>100 MeV neutrons</u>: the LET plot illustrates the dose contribution due to the different types of secondary particles produced in the PMMA

Comparison using irradiation in 100 MeV neutrons

Measured LET_{nc} in CR-39

Simulated LET in CR-39 with FLUKA

Measured mean LET spectrum

Alpha particles LET spectrum from FLUKA

Comparison using irradiation in 100 MeV neutrons

Measured LET_{nc} in CR-39

Simulated LET in CR-39 with FLUKA

Measured mean LET spectrum

Protons LET spectrum with a cut to protons higher than 10 MeV in a 10° cone normal to the detector

27/10/2013

Monte Carlo simulations for neutron dosimetry (FLUKA)

Beam	Measured Dose (mSv)	Reference Dose(mSv)	Detector Response
PTB 565 KeV	1.79	3.67	0.49
PTB 8 MeV	1.75	4.90	0.36
PTB 14 MeV	3.49	6.90	0.51
PTB 19 MeV	1.84	2.90	0.64
iThemba 66 MeV 0°	2.38	4.44	0.54
iThemba 66 MeV 16°	1.72	3.20	0.54
iThemba 100 MeV 0°	1.52	2.36	0.64
iThemba 100 MeV 16°	1.75	2.83	0.62
Average Sensitivity			0.54 ± 0.09

When looking at the energy deposited at the surface of the detector, where the tracks are produced, a simulated response close to the measured response can be found when removing the dose contribution from the particles that are not detected in CR-39.

Conclusion & Perspectives

- More calibration points at IRSN (lower + intermediate energies) and Los Alamos (higher energies) to have more experimental data
- More issues regarding the detection limit caused by etching have to be taken into account in the simulations in order to improve the LET comparison between experiments and simulations
- Evaluate the angular dependence of the detection system with a PuBe source at CERN and verify results against Monte Carlo simulations (MCNPX and FLUKA)

THANK YOU FOR YOUR ATTENTION!

This research project has been supported by the Marie Curie Initial Training Network Fellowship of the European Community's Seventh Framework Programme under Grant Agreement PITN-GA-4 2011-289198-ARDENT