Studies on Activation in the ATLAS cavern with MPX Detectors

Benedikt Bergmann

Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic

On behalf of the ATLAS MPX detector group

Nedaa Asbah², Petr Beneš¹, Bartoloměj Biskup¹, Jan Jakůbek¹, Claude Leroy², Stanislav Pospíšil¹, Jaroslav Šolc¹, André Sopczak¹, Vít Sopko¹, Paul Soueid², Michal Suk¹, Daniel Tureček¹, Zdeněk Vykydal¹

¹ IEAP CTU Prague, Czech Republic — ² Université de Montréal, Canada

Dresden 07/03/2013

Overview

- □ The ATLAS MPX-detector network
- □ Method of studying the activation (example MPX01)
 - Measured countrates during and after collisions
 - Modelling the decay of activated porducts
 - Adapting fit results to the measured data
- Overview over results for different detectors
- Summary

The ATLAS MPX detector network – Devices

□ Medipix 2 ASIC with 300µm Silicon layer

- 256 x 256 pixel
- Pixel pitch 55 µm

□ Converter foils:

- ⁶Li(n,α)³H: thermal neutrons
- recoiled protons below PE: fast neutrons

The ATLAS MPX detector network – detected particle types

- □ Efficiencies (for noncharged particles reduced by the conversion efficiency to detectable charged particles and geometry factors):
 - Charged particles (above 8 keV): 100%
 - X-rays (10 keV): ~80%
 - Gamma-rays (above 1 MeV): ~0.1%
 - Thermal neutrons (energy < 0.5 eV): ~1%</p>
 - Fast neutrons (MeV range): ~0.1%

Device lifetime:

- Expected to withstand up to 10¹³ n/cm²
- Before installation: tested up to 1.5x10¹² n/cm²
- Current integral number of high energy transfer particles (HETP) impinging on MPX01: 2x10¹⁰ HETP/cm²

07/03/2013

The ATLAS MPX detector network – MPX positions

Benedikt Bergmann - DPG Tagung Dresden

Count rate at MPX01 site during and after collisions

□ Activation of surrounding material during collisions in the ATLAS detector

- Luminosity monitoring with MPX devices: Background contribution
- Dosimetric aspect: What is the time dependency of the ambient dose equivalent rate after the collisions?

Count rates of the whole investigated period (March – Dec 2012)

Especially to determine the components with long half lifes it is necessary to use as long period as possible

Count rates at MPX01 site: decay period

07/03/2013

C. P. T

ERLANGEN CEN FOR ASTROPAN

□ Sum of radioactive decays of n isotopes:

$$f(t) = \sum_{i=1}^{n} k_i \cdot e^{-\frac{\ln(2)}{T_1^i} \cdot t}$$

□ Fit of sum of exponetial is an ill-conditioned problem

- 1. Choose appropriate region without collisions (exclude collisions)
- 2. Fit sum of two exponential decays
- 3. Subtract faster decay component from data
- 4. Repeat steps 2. and 3. until all data is fitted

□ Sum of radioactive decays of n isotopes:

$$f(t) = \sum_{i=1}^{n} k_i \cdot e^{-\frac{\ln(2)}{T_1^i} \cdot t}$$

□ Fit of sum of exponetial is an ill-conditioned problem

- 1. Choose appropriate region without collisions (exclude collisions)
- Fit sum of two exponential decays (with range 0 to estimated half life times 10)
- 3. Subtract faster decay component from data
- 4. Repeat steps 2. and 3. until all data is fitted

07/03/2013

□ Sum of radioactive decays of n isotopes:

$$f(t) = \sum_{i=1}^{n} k_i \cdot e^{-\frac{\ln(2)}{T_1^i} \cdot t}$$

□ Fit of sum of exponetial is an ill-conditioned problem

- 1. Choose appropriate region without collisions (exclude collisions)
- Fit sum of two exponential decays (with range estimated half life times 10)
- 3. Subtract faster decay component from data
- 4. Repeat steps 2. and 3. until all data is fitted

07/03/2013

□ Sum of radioactive decays of n isotopes:

$$f(t) = \sum_{i=1}^{n} k_i \cdot e^{-\frac{\ln(2)}{T_1^i} \cdot t}$$

□ Fit of sum of exponetial is an ill-conditioned problem

- 1. Choose appropriate region without collisions (exclude collisions)
- Fit sum of two exponential decays (with range estimated half life times 10)
- 3. Subtract faster decay component from data
- 4. Repeat steps 2. and 3. until all data is fitted

□ Sum of radioactive decays of n isotopes:

$$f(t) = \sum_{i=1}^{n} k_i \cdot e^{-\frac{\ln(2)}{T_1^i} \cdot t}$$

□ Fit of sum of exponetial is an ill-conditioned problem

- 1. Choose appropriate region without collisions (exclude collisions)
- Fit sum of two exponential decays (with range estimated half life times 10)
- 3. Subtract faster decay component from data
- 4. Repeat steps 2. and 3. until all data is fitted

Modelling one decay region with the fitted half lifes

Equation to describe the whole set of data

Institute of Experimental and Applied Physics Czech Technical University in Prague

 $M_{act}^{i} = \sum_{k=1}^{k} M_{act}^{i-1,k} \times e^{-\lambda_{k}t} + (M_{tot}^{i} - M_{act}^{i-1}) \times \theta(M_{tot}^{i} - M_{act}^{i-1}) \times \sum_{k=1}^{n} Y_{k} \times (1 - e^{-\lambda_{k}t})$

Decay of atoms activated before i-th frame

Activation during i-th frame (valid only during collisions)

M _{tot}	total count rate measured in the given MPX frame (normalized to unit time)
M _{act}	count rate caused by all activation products created <u>until the end</u> of the given (<i>i</i> -th)
λ	decay constant, $\lambda = \ln(2)/T_{1/2}$; $T_{1/2}$ is the half-life
t	time period between the end of $(i-1)$ -th frame and the end of <i>i</i> -th frame
Y_k	normalization constant, used to fit the growth/decay curve to the measured data

Deduced by Jaroslav Solc according laws of nuclear growth and decay

07/03/2013

A Contraction of the second se

Fitting the formula to the data

Adapting half lifes from the fit and adding longer components
Guessing the yields

S a

Activation – MPX01 (example 1)

07/03/2013

17

Activation – MPX01 (example 2)

Activation contribution to total count rate during collisions (MPX01)

Activation contribution to total count and the second seco

31.07.12,19:12 31.07.12,21:36 01.08.12,00:00 01.08.12,02:24 01.08.12,04:48 01.08.12,07:12 01.08.12,09:36 01.08.12,12:00 01.08.12,14:24

Overview – Half lifes and yields

MPX01	Activation component Half-life	1 21.4 s	2 2.7 min	3 24 min	4 3.9 h	5 20 h	6 7 d	7 104 d	8 350 d
	Yield	4.292E-03	2.413E-03	4.491E-04	4.860E-04	8.298E-04	6.472E-05	6.472E-05	0.000E+00
	Activation component	1	2	3	4	5	6	7	8
MPX02	Half-life	21.4 s	2.7 min	24 min	3.9 h	21 h	7 d	32 d	350 d
	Yield	3.816E-02	1.373E-02	2.396E-03	3.623E-03	2.667E-03	4.025E-04	1.421E-04	9.471E-05
	Activation component	1	2	3	4	5	6	7	8
MPX03	Activation component Half-life	1 21.4 s	2 2.7 min	3 24 min	4 3.9 h	5 22 h	6 7 d	7 32 d	8 350 d
MPX03	Activation component Half-life Yield	1 21.4 s 3.816E-02	2 2.7 min 1.318E-02	3 24 min 2.941E-03	4 3.9 h 3.410E-03	5 22 h 4.091E-03	6 7 d 7.103E-04	7 32 d 3.315E-04	8 350 d 9.471E-05
MPX03	Activation component Half-life Yield Activation component	1 21.4 s 3.816E-02	2 2.7 min 1.318E-02 2	3 24 min 2.941E-03 3	4 3.9 h 3.410E-03 4	5 22 h 4.091E-03 5	6 7 d 7.103E-04 6	7 32 d 3.315E-04 7	8 350 d 9.471E-05
MPX03	Activation component Half-life Yield Activation component Half-life	1 21.4 s 3.816E-02 1 21.4 s	2 2.7 min 1.318E-02 2 2.7 min	3 24 min 2.941E-03 3 24 min	4 3.9 h 3.410E-03 4 3.5 h	5 22 h 4.091E-03 5 19 h	6 7 d 7.103E-04 6 7 d	7 32 d 3.315E-04 7 111 d	8 350 d 9.471E-05 8 350 d

07/03/2013

Benedikt Bergmann - DPG Tagung Dresden

Summary

- A method was described to estimate the count rates of activated products during and after collisions
 - Estimate the background due to activation for the luminosity analysis
 - To predict time dependence of count rates after the beam is off (using known conversion factors the ambient dose equivalent rate can be obtained)
- Procedure was done for MPX01, MPX02, MPX03, MPX13 within the ATLAS-MPX detector network
 - Similar half lifes were obtaines for all detectors

Thank you for your attention!

