

Neutron Time-of-Flight, Proton and Heavy Ion Measurements with a Timepix Detector

B. Bergmann^{a)}, S. Brons^{e)}, I. Caicedo^{a)}, M. Holik^{a)}, V. Kraus^{a)}, J. Kirstead^{c)}, S. Pospisil^{a)}, M. Silari^{d)}, H. Takai^{c)}, D. Turecek^{a)}, Z. Vykydal^{a)} and S. Wender^{b)}

a) Institute for Experimental and Applied Physics, Czech Technical University in Prague

b) Los Alamos Neutron Science Center, Los Alamos National Laboratory

c) Brookhaven National Laboratory

d) CERN

e) Heidelberger Ionenstrahl-Therapiezentrum (HIT)

Time of Flight measurement with neutrons

BEAM TIME AT LOS ALAMOS NEUTRON SCIENCE CENTER

20.2.2014

3

Energy spectrum of the neutrons

Energy spectrum of the neutrons measured by a ²³⁸U fission chamber

4

Setup at FP 30 L and trigger signal

Detector:

- 1 mm thick silicon sensor layer
- TOA mode (f_{clock} = 48 MHz)
- Bias voltage = 400 V
- t_{acq} = 100 μs
- Distance to the interaction point 20.411 m

Cluster height spectrum

Acquisition time = $100 \ \mu s$ = $4800 \ clock \ counts$; Clock frequency = $48 \ MHz$;

Energy assignment by means of the Time-of-Flight technique

 Identify the beginning of the "last" micro-pulse, given by the gamma ray flash from the interaction point (ToA_{max})

□ The Time-of-Flight is given as:

$$t_{Flight} = [(ToA_{max} - ToA) / f_{clock} + d/c]$$

Time-difference to the gamma flash

time a gamma ray needs to travel from the interaction point to the detector (20.411 m)

□ Calculation of the kinetic neutron energy:

 $T = E - M = (\gamma - 1) M;$

$$\begin{split} \gamma &= (1 - \beta^2)^{-0.5}; \ \beta &= v \ / \ c &= d \ / \ (c \cdot t_{Flight}); \\ M &= 957.59 \ MeV; \ c &= 2.9997 \cdot 10^8 \ m/s; \ d &= 20.411 \ m \end{split}$$

Pattern recognition – definition of different cluster types

Dot		•		Photons and electrons (10keV)
Small Blob				Photons and electrons
Curly Track				Electrons (MeV range)
Heavy Blob				Heavy ionizing particles with low range (alpha particles,)
Heavy Track				Heavy ionizing particles (protons,)
Straight Track				Energetic light charged particles (MIP, Muons,)

20.2.2014

Cluster shapes as a function of neutron kinetic energy

Neutron elastic scattering

T<mark>'</mark>, ṕ'

(<u>n</u>)

T_{Si}, p_{Si}

Neutron elastic scattering

Prague

nstitute of Experimental and Applied Physics

echnical University in

Czech

$$\vec{p} \rightarrow \vec{s}_{i}$$

$$T_{n} = T_{n}^{I} + T_{si}^{I}$$

$$\vec{p}_{n} = \vec{p}_{n}^{I} + \vec{p}_{si}$$
Si

 $\begin{array}{c} T_{Si}=0\\ \overrightarrow{p}_{Si}=0 \end{array}$

Signal creation:

The detector is triggered by the ionization caused by the displacement of the silicon nucleus.

Signatures: Low energy transfer to the silicon sensor ($T_{si} \sim 70$ keV for $T_n = 1$ MeV).

-> Dots and small blobs

Number of events

Nuclear reactions on silicon

Nuclear reaction: Si (n,α) Mg

$T_{\alpha}^{\prime}, \vec{p}_{\alpha}^{\prime}$ ²⁵12Mg T_{Mg,} →_{Mg}

Nuclear reaction: Si (n,p) Al

Threshold reactions:

Q value has to be compensated by energy of the incoming neutron.

Signature:

Characterized by high energy deposition in the silicon sensor layer.

-> Heavy tracks and heavy blobs

Institute of Experimental and Applied Physics **Czech Technical University in Prague**

Number of events

Detector responses for selected energy intervals

4500

4000

3500 3000

2500

2000

1500

1000

500

Benedikt Bergmann - Medipix Meeting

20.2.2014

Protons, Carbon, Oxygen and Helium – First look ...

BEAM TIME AT HIT IN HEIDELBERG

Investigated ions species and detector settings

Detector

- 1 mm thick silicon sensor
- Bias voltage 400 V
- Clock frequency: f_{clock} = 48 MHz
- Time-over-threshold mode

□ Beam time organized by ARDENT framework (~ 17 h)

- Protons (48 MeV/u, 75 MeV/u, 100 MeV/u)
- Carbon ions (89 MeV/u, 200 MeV/u, 300 MeV/u, 430 MeV/u)
- Oxygen (104 MeV/u, 250 Mev/u, 430 MeV/u)
- Helium (50 MeV/u, 80 MeV/u, 115 MeV/u, 150 MeV/u, 185 MeV/u, 221 MeV/u)
- For each particle type the detector has been irradiated under 0°, 60° and 90°

Protons with different energies: 90 degree

100 MeV/u

Institute of Experimental and Applied Physics Czech Technical University in Prague

20.2.2014

Benedikt Bergmann - Medipix Meeting

Carbon ions with different energies: 90 degrees

- Halo of pixel with low energy deposition around track - less pronounced for higher energies.
- Number of delta rays increases with increasing energy.

Oxygen ions with different energies: 90 degrees

Benedikt Bergmann - Medipix Meeting

75

256

100

17

256

100

75

20.2.2014

Alphas with different energies: 90 degrees

nstitute of Experimental and Applied Physics

Benedikt Bergmann - Medipix Meeting

Volcano effect for carbon and oxygen ions – 0 degree

Oxygen: 104 MeV/u

Carbons: 89 MeV/u

nstitute of Experimental and Applied Physics

Czech Technical University in Prague

Strategy, plan – Categorization and particle identification

- Look at track as a whole with low energy halo i.e. characterize size, shape.
- 2. Strip off halo (cut on energy per pixel).
- 3. Count number of delta-rays and measure their length.
- 4. Fit the track to obtain dE/dx information.

Identify particle type and particle energy via the size of the halo, the number of delta rays, their length and dE/dx.

Thank you for your attention!

