GEM and GEMPix measurements at CNAO

Outline

• GEM

- Setup
- Linearity
- FWHM
- Homogeneity of irradiation field
- GEMPix
 - Set up
 - Linearity
 - Measurements in water phantom
- Monolithic Silicon Telescope
 - Microdosimetric characterization of a clinical carbon ion beam
 - Comparison with TEPC

- Particle conversion, charge amplification and signal induction zones are physically separated
- Time resolution: **9.7 ns** for $Ar-CO_2$ (70-30)
- Spatial resolution: up to 200 μm limited by readout
- Dynamic range: from 1 to 10⁸ particles/cm² s
- Effective gain is given by the formula: $G_{eff} \propto \sum V_{G_i}$

- Circular anode: 128 pads 2x2 mm² ~ 9 cm² of sensitive area
- Square: 128 pads 3x6 mm² ~ 25 cm² of sensitive area
- 8 chip CARIOCA to set the threshold on 16 channels and reshape the signal
- FPGA-based DAQ: 128 scaler and TDC channels, in \rightarrow gate and trigger, out \rightarrow signals
- HVGEM power supply with 7 independent channels and nano-ammeter

- Circular anode: 128 pads 2x2 mm² ~ 9 cm² of sensitive area
- Square: 128 pads 3x6 mm² ~ 25 cm² of sensitive area
- 8 chip CARIOCA to set the threshold on 16 channels and reshape the signal
- FPGA-based DAQ: 128 scaler and TDC channels, in \rightarrow gate and trigger, out \rightarrow signals
- HVGEM power supply with 7 independent channels and nano-ammeter

Detectors and set up for CNAO measurements

- Measurements done with scanned C-12 beams (and protons)
- Linearity test
- Paint procedure with a radiochromic foil in front of the GEM

Paint procedure reconstruction with triple GEM

- The paint procedure can be recorded and reconstructed offline through the data acquisition system [5, 6]
- The result of the complete scan procedure is shown in the acquisition program

Linearity

The intensity scan of the beam was performed to check the linearity of the response of the detector versus beam intensity

FWHM of the pencil beam:

- The tolerance for the FWHM measurements is 1 mm [1]
- The control room gave a FWHM of 10 mm in one of transverse direction
- GEM measures 9.2 ± 0.2

X-Y scan procedure:

- The cancer area is scanned with the hadron beam along the X-Y axis
- The dose is uniform over the treated area
- The scan is possible also in the Z direction (not in this study)

- Offline **Triple GEM [2, 3]** reconstruction of the paint procedure.
 - 45 frames of 100 ms.
 - Negligible dead time [4]

Beam characteristics

	Carbon Beam	
X-Y scanned area (cm ²)	2x2	4x4
Energy (MeV/nucl)	252	252
Depth in H ₂ O (mm)	126	126
Intensity (part/spot)	5e6	1e6

Radiochromic foil & GEM 3x6 mm² pads. Beam 126 mm depth in water, 1e6 part per spot. Paint 4x4 cm²

Pad 3x6 mm² X-Y scan 4x4 cm²

Left: horizontal profile for Radiochromic and GEM Right: vertical profile for Radiochromic and GEM

Radiochromic foil & GEM 3x6 mm² pads. Beam 126 mm depth in water, 5e6 part per spot. Paint 2x2 cm²

Pad 3x6 mm² X-Y scan 2x2 cm²

Left: horizontal profile for Radiochromic and GEM Right: vertical profile for Radiochromic and GEM

Conclusions:

- Timing, profiles and image of the x-y scan procedure are shown on line
- A more accurate timing can be performed with a trigger from the synchrotron
- The offline analysis shows a good agreement with the radiochromic foils, both in terms of area and beam profile
- The GEM showed capability to measure beam intensity down to very low values. Could it be of interest as beam monitor in the experimental room?

References:

[1] M. Ciocca et al., *Quality assurance Protocol at Centro Nazionale di Adroterapia Oncologica (CNAO)*, <u>https://ulice.web.cern.ch/ulice/cms/documents/Protocol 1-</u> QA-CNAO.pdf

[2] F. Sauli, *GEM: A new concept for electron amplification in gas detectors*, <u>Nuclear Instruments and Methods in Physics Research A386, p 531, 1997</u>

[3] M. Alfonsi et al., *The triple-Gem detector for the M1R1 muon station at LHCb*, N14-182, 2005 IEEE-NSS

[4] E. Aza et al., *The triple GEM detector as beam monitor for relativistic hadron beams*, <u>JINST 9 P06006, 2014</u>

[5] W. Bonivento et al., Development of the CARIOCA front-end chip for the LHCb muon detector, <u>Nuclear Instruments and Methods in Physics Research A491, pp. 233–243, 2002</u>

[6] F. Murtas et al., *Applications in beam diagnostics with triple GEM detectors*, <u>Nucl. Instrum. Meth. A</u> <u>617 (2010) 237.</u>

Gas Electron Multiplier (GEM) Technology

- Micro pattern gas detector
- Thin holes are etched in a metallised kapton foil and a potential is placed across it
- Very large electric field around the holes (40 kV/cm) which creates a localised electron avalanche
- Couple a timepix asic for readout

Quad Timepix ASIC

Gas Electron Multiplier (GEM) Technology

- Micro pattern gas detector
- Thin holes are etched in a metallised kapton foil and a potential is placed across it
- Very large electric field around the holes (40 kV/cm) which creates a localised electron avalanche
- Couple a timepix asic for readout

Quad Timepix ASIC

Detector Linearity

90 s measurement, 1 s spill, spill every 5 seconds

Counts are the integral over the total 90 s period

Number of ions is the counts/average carbon cluster size (~130 pixels)

(Dead time is significant however ~1/10)

Time Profile of Particle Spill

Energy Deposition Measurements for Hadron Therapy

- 252 MeV/A Carbon Ion Beam at CNAO
- 23 different depths throughout water phantom
- Each position given spot 5.10⁸ carbon ion treatment (clinical treatment intensities)
- Frame length = 1 ms, gas = $ArCO_2$, gain = 750 (0.43 keV/TOT)

Gempix

tepper

Phantom

Thin Window

Beam characteristics for Bragg peak measurements

	Carbon Beam	
Energy (MeV/nucl)	252	
Depth in H ₂ O (mm)	126	
Intensity (part/spot)	5e8	

Typical Frame

Results - Bulk

Reconstructed Dataset

Reconstructed Dataset

Beam enters from right, carbon fragmentation tail on left

Conclusions:

- GEMPix allows reconstructing the Bragg peak in the water phantom. The procedure allows measuring also the tail of the beam after the Bragg peak, useful to have a dosimetric measurements
- The idea would be to incorporate GEMPix in a 3D motorized water phantom and operate it for routing QA
- To be studied: the potential of GEMPix for microdosimetry

SEGMENTED SILICON TELESCOPE FOR MICRODOSIMETRY

 ΔE stage : matrix of cylindrical diodes (h = 2 µm , d = 9 µm)

More than 7000 pixels are connected in parallel to give an effective detection area of the ΔE stage of about 0.5 mm²

Monolithic Silicon Telescope: measurements at different depths in water phantom

Comparison with a miniaturized cylindrical TEPC

Conclusions

- 1) Capability of measuring microdosimetric spectra of carbon ion beams
- 2) Good agreement with TEPC results
- 3) Easy operation