Neutron Time-of-Flight, Proton and Heavy Ion Measurements with a Timepix Detector

B. Bergmanna), S. Bronse), I. Caicedoa), M. Holika), V. Krausa), J. Kirsteadc), S. Pospisila), M. Silarid), H. Takaic), D. Tureceka), Z. Vykydala) and S. Wenderb)

a) Institute for Experimental and Applied Physics, Czech Technical University in Prague
b) Los Alamos Neutron Science Center, Los Alamos National Laboratory
c) Brookhaven National Laboratory
d) CERN
e) Heidelberger Ionenstrahl-Therapiezentrum (HIT)
Time of Flight measurement with neutrons

BEAM TIME AT LOS ALAMOS NEUTRON SCIENCE CENTER

20.2.2014

Benedikt Bergmann - Medipix Meeting
Los Alamos Neutron Science Center (LANSCE)

- Neutron spallation source: 800 MeV protons on tungsten target
- ‘white’ neutron spectrum with kinetic neutron energies up to 600 MeV
Energy spectrum of the neutrons measured by a 238U fission chamber
Setup at FP 30 L and trigger signal

- Detector:
 - 1 mm thick silicon sensor layer
 - TOA mode \((f_{\text{clock}} = 48 \text{ MHz})\)
 - Bias voltage = 400 V
 - \(t_{\text{acq}} = 100 \mu\text{s}\)
 - Distance to the interaction point 20.411 m
Cluster height spectrum

Acquisition time = 100 µs = 4800 clock counts; Clock frequency = 48 MHz;
Energy assignment by means of the Time-of-Flight technique

- Identify the beginning of the “last” micro-pulse, given by the gamma ray flash from the interaction point (ToA_{max}).

- The Time-of-Flight is given as:

$$t_{\text{Flight}} = \left[\frac{(ToA_{max} - ToA)}{f_{\text{clock}}} + \frac{d}{c} \right]$$

 - Time-difference to the gamma flash
 - time a gamma ray needs to travel from the interaction point to the detector (20.411 m)

- Calculation of the kinetic neutron energy:

$$T = E - M = (\gamma - 1) M;$$

$$\gamma = (1 - \beta^2)^{-0.5}; \quad \beta = \frac{v}{c} = \frac{d}{(c \cdot t_{\text{Flight}})};$$

$$M = 957.59 \text{ MeV}; \quad c = 2.9997 \cdot 10^8 \text{ m/s}; \quad d = 20.411 \text{ m}$$
Pattern recognition – definition of different cluster types

<table>
<thead>
<tr>
<th>Cluster Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot</td>
<td>Photons and electrons (10keV)</td>
</tr>
<tr>
<td>Small Blob</td>
<td>Photons and electrons</td>
</tr>
<tr>
<td>Curly Track</td>
<td>Electrons (MeV range)</td>
</tr>
<tr>
<td>Heavy Blob</td>
<td>Heavy ionizing particles with low range (alpha particles, ...)</td>
</tr>
<tr>
<td>Heavy Track</td>
<td>Heavy ionizing particles (protons, ...)</td>
</tr>
<tr>
<td>Straight Track</td>
<td>Energetic light charged particles (MIP, Muons, ...)</td>
</tr>
</tbody>
</table>
Cluster shapes as a function of neutron kinetic energy

Resonances of elastic scattering of neutrons on silicon nuclei

$^{28}\text{Si}(n,p)^{28}\text{Al}$ and $^{28}\text{Si}(n, \alpha)^{25}\text{Mg}$-reactions appear

Number of events

0 1000 2000

Kinetic energy of neutrons [MeV]

10^{-2} 10^{-1} 1 10 10^2 10^3
Neutron elastic scattering

Signal creation:
The detector is triggered by the ionization caused by the displacement of the silicon nucleus.

Signatures:
Low energy transfer to the silicon sensor ($T_{Si} \sim 70$ keV for $T_n = 1$ MeV).

-> Dots and small blobs
Nuclear reactions on silicon

Threshold reactions:
Q value has to be compensated by energy of the incoming neutron.

Signature:
Characterized by high energy deposition in the silicon sensor layer.

-> Heavy tracks and heavy blobs
Detector responses for selected energy intervals

- Above 4 MeV: nuclear interaction appear
- Above 30 MeV: HETP are getting more and more asymmetric and bigger with increasing energy
- Above 10 MeV: tracks with delta electrons are detected
Protons, Carbon, Oxygen and Helium – First look ...

BEAM TIME AT HIT IN HEIDELBERG

20.2.2014

Benedikt Bergmann - Medipix Meeting
Investigated ions species and detector settings

- **Detector**
 - 1 mm thick silicon sensor
 - Bias voltage 400 V
 - Clock frequency: \(f_{\text{clock}} = 48 \text{ MHz} \)
 - Time-over-threshold mode

- **Beam time organized by ARDENT framework (~ 17 h)**
 - Protons (48 MeV/u, 75 MeV/u, 100 MeV/u)
 - Carbon ions (89 MeV/u, 200 MeV/u, 300 MeV/u, 430 MeV/u)
 - Oxygen (104 MeV/u, 250 MeV/u, 430 MeV/u)
 - Helium (50 MeV/u, 80 MeV/u, 115 MeV/u, 150 MeV/u, 185 MeV/u, 221 MeV/u)

 - For each particle type the detector has been irradiated under 0°, 60° and 90°
Protons with different energies: 90 degree
Carbon ions with different energies: 90 degrees

- Halo of pixel with low energy deposition around track - less pronounced for higher energies.
- Number of delta rays increases with increasing energy.
Oxygen ions with different energies: 90 degrees
Alphas with different energies:

90 degrees:

- 50 MeV/u
- 80 MeV/u
- 115 MeV/u
- 185 MeV/u
- 221 MeV/u

20.2.2014 Benedikt Bergmann - Medipix Meeting
Volcano effect for carbon and oxygen ions – 0 degree

Carbons: 89 MeV/ u

Oxygen: 104 MeV/ u
Strategy, plan – Categorization and particle identification

1. Look at track as a whole with low energy halo i.e. characterize size, shape.

2. Strip off halo (cut on energy per pixel).

3. Count number of delta-rays and measure their length.

4. Fit the track to obtain dE/dx information.

Identify particle type and particle energy via the size of the halo, the number of delta rays, their length and dE/ dx.
Thank you for your attention!