ARDOS
Advanced Radiation Dosimetry System

Natalia Kostiukhina¹, Andrej Sipaj¹, Sofia Rollet¹, Elisabeth Steiner²,³, Peter Kuess²,³, Hugo Furtado³,⁴ and Dietmar Georg²,³

¹ AIT Austrian Institute of Technology GmbH, Health & Environment Department, Biomedical Systems, Vienna, Austria
² Medical University of Vienna / AKH Vienna, Division Medical Radiation Physics, Department of Radiation Oncology, Vienna, Austria
³ Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Austria
⁴ Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria

Tagung der Österreichischen Gesellschaft für Medizinische Physik (ÖGMP), 2015
Background

- Respiratory induced intra- and inter-fractional lung tumor motion can cause significant uncertainties in dose delivery of lung cancer radiotherapy

- Motion-management strategies:
 - Beam-gating, breath-hold control
 - Additional margin to Internal Target Volume (ITV)
 - 4D (3D + t) techniques for imaging, treatment planning and dose delivery *

- Necessity to verify such techniques and/or
- Investigate the related dosimetric improvements under conditions as close as possible to the clinical situation

* [Korremann, 2012; Hugo et al, 2012]
Respiratory Motion Phantom - ARDOS

Features (1/2):

1. Represents an average human torso with a movable tumor insert
 Comprises a chest wall, ribs, and lungs

2. Made from tissue-equivalent materials:
 Lung tissue - high density balsa wood (0.3 g/cm³),
 tissue equivalent solid water (1.05 g/cm³), and bone material (1.4 g/cm³)
Respiratory Motion Phantom - ARDOS

Features (2/2):

3. Different types of dosimeters can be used:
 Films, TLDs, pinpoint IC, diamond, diode, alanine

4. 4 programmable independent motions:
 Tumor insert – up to 360 degrees rotation and 10 cm translation
 Lung expansion – up to 4 cm
 Rib motion – up to 10 cm
 Declared by the manufacturer accuracy – 0.025 mm
Dosimetric Investigation - Setup

- Based on standard clinical photon beam-based stereotactic protocol
- Dosimetric verification: EBT3, pin-point IC, TLDs
- Implemented motion scenarios:
 - Static
 - Chest wall motion – 7.5 cm amplitude
 - Ribs motion – 1.8 cm amplitude
 - Tumor motion – 1.5 cm amplitude & 90 degrees rotation
 - Combined motion – Chest wall, Ribs & Tumor
Dosimetric Investigation - Preliminary Results

Dose difference depending on the motion of the phantom

Motion scenarios
- Static
- Chest wall motion
- Ribs motion
- Combined motion

Relative dose
- EBT3
- IC
- TLDs
- MEAN VALUE
Image Registration Software Verification

Tumor-motion tracking based on 4D-CT data

Fig 1 - Extracted tumor motion (blue) in comparison with annotated motion (black)
Next Steps

Short-term

- Continue dosimetric studies with multiple detectors (improve statistics)
- Continue image registration software verification
 - with more challenging tumor inserts and materials
 - using the MV data in combination with kV, and ExacTrac
- Start dosimetric verification of VMAT for lung-cancer
- Start pilot study for 4D PET

Medium-term

- Start research of scanned ion beams
- Develop and implement a QA workflow protocol
- Compare measured data with MC simulation
Thank you for your attention!

Any questions?