Probing Defects

in a Small Pixellated CdTe Sensor Using an Inclined Mono Energetic X-Ray Micro Beam

Erik Fröjdh^{1,2}, C. Fröjdh¹, E. N. Gimenez⁴, D. Krapohl¹, D.Maneuski³, B.Norlin¹, V.O'Shea³, H. Wilhelm⁴, N. Tartoni⁴, G. Thungström⁴, R. M. Zain³

¹Mid Sweden University ²CERN ³Glasgow University ⁴Diamond Light Source Oct 31 2012, R-10, RTSD

Outline

- Timepix and sensor
- Measurement Setup
- X-ray response maps
- Defects
 - Big defect
 - Point defect
 - Line defect
 - Large ring defect
- Conclusions

2/24

Timepix

- Developed by the Medipix2 collaboration
- Single photon processing
 - Time of arrival
 - Time over threshold
 - Photon counting
- 256x256 pixels
- 55 μ m pixel pitch
- Electron or hole collection mode.

The Sensors

- CdTe, with Ohmic contacts (Pt)
- 55 μ m and 110 μ m pixel pitch
- Imm thick
- Bump bonded to Timepix by FMF Freiburg
- CdTe from ACRORAD

Energy resolution in counting mode at 79keV

■ 55µm FWHM: 5.6%

■ 110µm FWHM: 3.5%

Measurement Setup

- Mono energetic 79keV micro beam (115)
- Timepix with CdTe Sensor
- Fitpix 2.3 Read out system, Pixelman software (IEAP, Czech Technical University, Prague)
- Python, PyRoot for data analysis

X-ray response map

I I 0 μ m, -300V

 $55\mu\mathrm{m}$, $-300\mathrm{V}$

X-ray response map

I I 0 μ m, -300V

 $55\mu\mathrm{m}$, $-300\mathrm{V}$

- Raster scan over the defect
- $110\mu m$ step
- Counting mode
- Compare the beam position with the counts in the sensor

- Charge drifts towards the center of the defect
- Indication of high leakage in the center

Integrated spectra

- Scan with an inclined beam
- Time over threshold mode
- Investigating depth of interaction response

40

50

60

70

Tot

X-ray response map

I I 0 μ m, -300V

 $55 \mu m$, -300 V

X-ray response map

I I 0 μ m, -300V

 $55\mu\mathrm{m}$, $-300\mathrm{V}$

Lines

- Lines stay at the same place troughout the detector
- Indications of better charge transport.
 - More visible in the top layer
 - More visible with higher threshold

Positive bias

55 μ m -300V

 $55\mu\mathrm{m}$ +150V

- Different behavior from negative bias
- Defect travel and pulse over time
- After image remains for some time.
 (Bias cycle does not help)

Erik Fröjdh Probing Defects 21 / 24

Bias: +150V single step

Bias: +150V single step

-300V

Bias: +150V single step

-300V

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

-300V

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

-300V

Bias: +150V single step

Bias: +150V single step

-300V

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

Bias: +150V single step

Conclusions

- We can map the response of defects in CdTe sensors with an monoenergetic microbeam.
- Using an inclined beam can provide information about the depth of interaction dependence
- Defects shows a large difference in behavior when swithing bias polarity
- This information can be used to understand the nature of the defect and to create correction algorithms
- Combination with other characterization methods would be useful

