

ARDOS

Advanced Radiation Dosimetry System

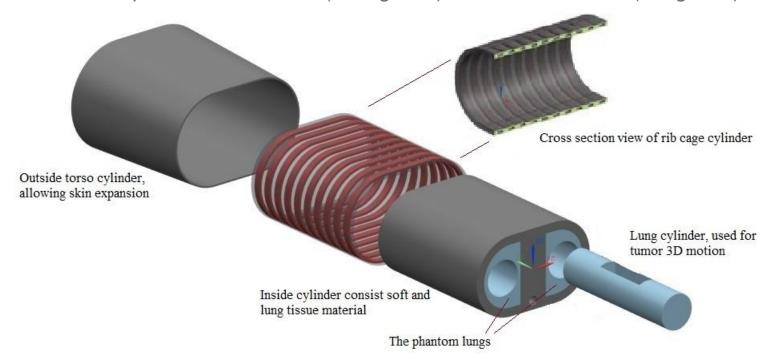
Natalia Kostiukhina¹, Andrej Sipaj¹, Sofia Rollet¹, Elisabeth Steiner^{2,3}, Peter Kuess^{2,3}, Hugo Furtado^{3,4} and Dietmar Georg^{2,3}

- ¹ AIT Austrian Institute of Technology GmbH, Health & Environment Department, Biomedical Systems, Vienna, Austria
- ² Medical University of Vienna / AKH Vienna, Division Medical Radiation Physics, Department of Radiation Oncology, Vienna, Austria
- ³ Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Austria
- ⁴ Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria

Background

- Respiratory induced intra- and inter-fractional lung tumor motion can cause significant uncertainties in dose delivery of lung cancer radiotherapy
- Motion-management strategies:
 - Beam-gating, breath-hold control
 - Additional margin to Internal Target Volume (ITV)
 - 4D (3D + t) techniques for imaging, treatment planning and dose delivery *
- Necessity to verify such techniques and/or
- Investigate the related dosimetric improvements under conditions as close as possible to the clinical situation

^{* [}Korremann, 2012; Hugo et al, 2012]



Respiratory Motion Phantom - ARDOS

Features (1/2):

- 1. Represents an average human torso with a movable tumor insert Comprises a chest wall, ribs, and lungs
- 2. Made from tissue-equivalent materials:

Lung tissue - high density balsa wood (0.3 g/cm3), tissue equivalent solid water (1.05 g/cm3), and bone material (1.4 g/cm3)

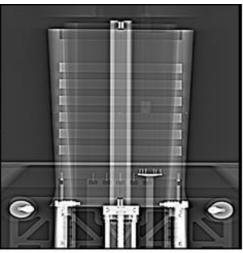
Respiratory Motion Phantom - ARDOS

Features (2/2):

3. Different types of dosimeters can be used:

Films, TLDs, pinpoint IC, diamond, diode, alanine

4. 4 programmable independent motions:


Tumor insert – up to 360 degrees rotation and 10 cm translation

Lung expansion – up to 4 cm

Rib motion – up to 10 cm

Declared by the manufacturer accuracy – 0.025 mm

Dosimetric Investigation - Setup

- Based on standard clinical photon beam-based stereotactic protocol
- Dosimetric verification: EBT3, pin-point IC, TLDs
- Implemented motion scenarios:
 - Static
 - Chest wall motion 7.5 cm amplitude
 - Ribs motion 1.8 cm amplitude
 - Tumor motion 1.5 cm amplitude
 & 90 degrees rotation
 - Combined motion Chest wall, Ribs
 & Tumor

Dosimetric Investigation - Preliminary Results

Dose difference depending on the motion of the phantom

Image Registration Software Verification

Tumor-motion tracking based on 4D-CT data

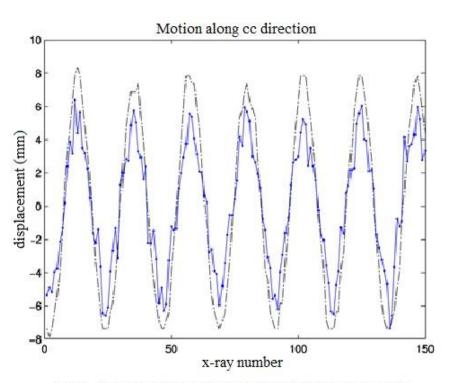
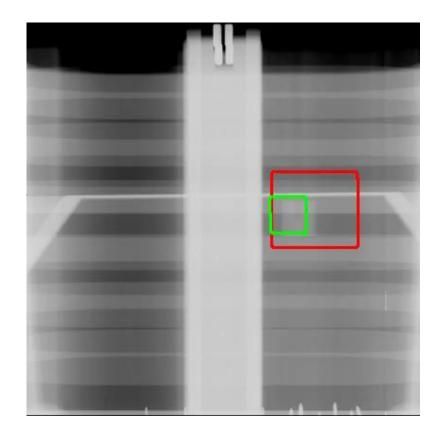



Fig 1 - Extracted tumor motion (blue) in comparison with annotated motion (black)

Next Steps

Short-term

- Continue dosimetric studies with multiple detectors (improve statistics)
- Continue image registration software verification
 - with more challenging tumor inserts and materials
 - using the MV data in combination with kV, and ExacTrac
- Start dosimetric verification of VMAT for lung-cancer
- Start pilot study for 4D PET

Medium-term

- Start research of scanned ion beams
- Develop and implement a QA workflow protocol
- Compare measured data with MC simulation

Thank you for your attention!

Any questions?

